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Summary

Part Il contains three chapters dealing with hardware technologies underlying the development of parallel
processing computers. The discussions cover advanced processors, memory hierarchy, and pipelining
technologies. These hardware units must work with software, and matching hardware design with
program behavior is the main theme of these chapters,

We will study RISC, CISC, scalar, superscalar, VLIWY, superpipelined, vector, and symbolic processors.
Digital bus, cache design, shared memory, and virtual memory technologies will be considered. Advanced
pipelining principles and their applications are described for memory access, instruction execution,
arithmetic computation, and vector processing. These chapters are hardware-oriented. Readers whose
interest is mainly in software can skip Chapters 5 and 6 after reading Chapter 4.

The material in Chapter 4 presents the functional architectures of Processors and memory hierarchy
and will be of interest to both computer designers and programmers. After reading Chapter 4, one
should have a clear picture of the logical structure of computers. Chapters 5 and 6 describe physical
design of buses, cache operations, processor architectures, memory organizations, and their management,
issues,
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Architectural families of modern processors are introduced below, from processors used in
workstations or multiprocessors to those designed for mainframes and supercomputers.
Major processor families to be studied include the CISC, RISC, superscalar, VLIW, superpipelined, vector,
and symbolic processors. Scalar and vector processors are for numerical computations. Symbolic processors
have been developed for Al applications.

4.1.1 Design Space of Processors

Various processor families can be mapped onto a coordinated space of clock rate versus cycles per instruction
(CPI), as illustrated in Fig. 4.1. As implementation technology evolves rapidly, the clock rates of various
processors have moved from low to higher speeds toward the right of the design space. Another trend is that
processor manufacturers have been trying to lower the CPI rate using innovative hardware approaches.

Based on these trends, the mapping of processors in Fig. 4.1 reflects their implementation during the past
decade or so.

Figure 4.1 shows the broad CPI versus clock speed characteristics of major categories of current processors.
The two broad categories which we shall discuss are CISC and RISC. In the former category, at present there
is the only one dominant presence—the x86 processor architecture; in the latter category, there are several
examples, e.g. Power series, SPARC, MIPS, etc.
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Under both CISC and RISC categories, products designed for multi-core chips, embedded applications, or
for low cost and/or low power consumption, tend to have lower clock speeds. High performance processors
must necessarily be designed to operate at high clock speeds. The category of vector processors has been
marked VP; vector processing features may be associated with CISC or RISC main processors.

The Design Space Conventional processors like the Intel Pentium, M68040, older VAX/8600, IBM 350,
etc. fall into the family known as complex-instruction-set computing (CISC) architecture. With advanced
implementation techniques, the clock rate of today’s CISC processors ranges up to a few GHz. The CPI of
different CISC instructions varies from 1 to 20. Therefore, CISC processors are at the upper part of the design
space.

Reduced-instruction-set computing (RISC) processors include SPARC, Power series, MIPS, Alpha,
ARM, etc. With the use of efficient pipelines, the average CPI of RISC instructions has been reduced to
between one and two cycles.

An important subclass of RISC processors are the superscalar processors, which allow multiple
instructions to be issued simultaneously during each cycle. Thus the effective CP1 of a superscalar processor
should be lower than that of a_scalar RISC processor. The clock rate of superscalar processors matches that
of scalar RISC processors.

The very long instruction word (VLIW) architecture can in theory use even more functional units than a
superscalar processor. Thus the CP1 of a VLIW processor can be further lowered. Intel’s 1860 RISC processor
had VLIW architecture.

The processors in vector supercomputers use multiple functional units for concurrent scalar and vector
operations.

The effective CPI of a processor used in a supercomputer should be very low, positioned at the lower
right comer of the design space. However, the cost and power consumption increase appreciably if processor
design is restricted to the lower right corner. Some key issues impacting modern processor design will be
discussed in Chapter 13.
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Instruction Pipelines The execution cycle of a typical instruction includes four phases: fefch, decode,
execute, and write-back. These instruction phases are often executed by an instruction pipeline as demonstrated
in Fig. 4.2a. In other words, we can simply model an instruction processor by such a pipeline structure.

For the time being, we will use an abstract pipeline model for an intuitive explanation of various processor
classes. The pipeline, like an industrial assembly line, receives successive instructions from its input end and
executes them in a streamlined, overlapped fashion as they flow through.

A pipeline cycle is intuitively defined as the time required for each phase to complete its operation,
assuming equal delay in all phases (pipeline stages). Introduced below are the basic definitions associated
with instruction pipeline operations:
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(1) Instruction pipeline cycle—the clock period of the instruction pipeline.

(2) Instruction issue latency-—the time (in cycles) required between the issuing of two adjacent instructions.

(3} Instruction issue rate—the number of instructions issued per cycle, also called the degree of a
superscalar processor.



136" 0. Advanced Computer Architecture

(4) Simple operation latency-—Simple operations make up the vast majority of instructions executed
by the machine, such as integer adds, loads, stores, branches, moves, etc. On the contrary, complex
operations are those requiring an order-of-magnitude longer latency, such as divides, cache misses, etc.
These latencies are measured in number of cycles.

(5) Resource conflicts—This refers to the situation where two or more instructions demand use of the
same functional unit at the same time.

A base scalar processor is defined as a machine with one instruction issued per cycle, a one-cycle latency
for a simple operation, and a one-cycle latency between instruction issues. The instruction pipeline can be fully
utilized if successive instructions can enter it continuously at the rate of one per cycle, as shown in Fig. 4.2a.

However, the instruction issue latency can be more than one cycle for various reasons (to be discussed
in Chapter 6). For example, if the instruction issue latency is two cycles per instruction, the pipeline can be
underutilized, as demonstrated in Fig. 4.2b.

Another underpipelined situation is shown in Fig. 4.2¢, in which the pipeline cycle time is doubled by
combining pipeline stages. In this case, the fetch and decode phases are combined into one pipeline stage,
and execute and write-back are combined into another stage. This will also result in poor pipeline utilization.

The effective CPI rating is 1 for the ideal pipeline in Fig. 4.2a, and 2 for the case in Fig. 4.2b. In Fig. 4.2¢,
the clock rate of the pipeline has been lowered by one-half. According to Eq. 1.3, either the case in Fig. 4.2b
or that in Fig. 4.2¢ will reduce the performance by one-half, compared with the ideal case (Fig. 4.2a) for the
base machine.

Figure 4.3 shows the data path architecture and control unit of a typical, simple scalar processor which
does not employ an instruction pipeline. Main memory, I/O controllers, etc. are connected to the external bus.
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The control unit generates control signals required for the fetch, decode, ALU operation, memory access,
and write result phases of instruction execution. The control unit itself may employ hardwired logic, or—as
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was more common in older CISC style processors—microcoded logic. Modern RISC processors employ
hardwired logic, and even modern CISC processors make use of many of the techniques originally developed
for high-performance RISC processorst).

4.1.2 Instruction-Set Architectures

In this section, we characterize computer instruction sets and cxamine hardware features built into generic
RISC and CISC scalar processors. Distinctions between them are revealed. The boundary between RISC and
CISC architectures has become blurred in recent years. Quite a few processors are now built with hybrid
RISC and CISC features based on the same technoiogy. However, the distinction is still rather sharp in
instruction-set architectures.

The instruction set of a computer specifies the primitive commands or machine instructions that a
programmmer can use in programming the machine. The complexity of an instruction set is attributed to the
instruction formats, data formats, addressing modes, general-purpose registers, opcode specifications, and
flow control mechanisms used. Based on past experience in processor design, two schools of thought on
instruction-set architectures have evolved, namely, CISC and RISC,

Complex Instruction Sets In the early days of computer history, most computer families started with an
instruction set which was rather simple. The main reason for being simple then was the high cost of hardware.
The hardware cost has dropped and the software cost has gone up steadily in the past decades. Furthermore,
the semantic gap between HLL features and computer architecture has widened.

The net result at one stage was that more and more functions were built into the hardware, making the
instruction set large and complex. The growth of instruction sets was also encouraged by the popularity of
microprogrammed control in the 1960s and 1970s. Even user-defined instruction sets were implemented
using microcodes in some processors for special-purpose applications. ‘

A typical CISC instruction set contains approximately 120 to 350 instructions using variable instruction/
data formats, uses a small set of & to 24 general-purpose registers (GPRs), and executes a large number
of memory reference operations based on more than a dozen addressing modes. Many HLL statements
are directly implemented in hardware/firmware in a CISC architecture. This may simplify the compiler
development, improve execution efficiency, and allow an extension from scalar instructions to vector and
symbolic instructions.

Reduced Instruction Sets After two decades of using CISC processors, computer designers began to
reevaluate the performance relationship between instruction-set architecture and available hardware/software
technology.

Through many years of program tracing, computer scientists realized that only 25% of the instructions of a
complex instruction set are frequently used about 95% of the time. This implies that about 75% of hardware-
supported instructions often are not used at all. A natural question then popped up: Why should we waste
valuable chip area for rarely used instructions? '

With low-frequency elaborate instructions demanding long microcodes to execute them, it might be more
advantageous to remove them completely from the hardware and rely on software to implement them. Even
if the software implementation was slow, the net result would be still a plus due to their low frequency
of appearance. Pushing rarely used instructions into software would vacate chip areas for building more

MFuller discussion of these basic architectural concepts can be found in Computer System Organisation, by Naresh
Jotwani, Tata McGraw-Hill, 2009,
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powerful RISC or superscalar processors, even with on-chip caches or floating-point units, and hardwired
control would allow faster clock rates.

A RISC instruction set typically contains less than 100 instructions with a fixed instruction format
(32 bits). Only three to five simple addressing modes are used. Most instructions are register-based. Memory
access is done by load/store instructions only . A large register file (at least 32) is used to improve fast context
switching among multiple users, and most instructions execute in one cycle with hardwired control.

The resulting benefits include a higher clock rate and a lower CPI, which lead to higher processor
performance.

Architectural Distinctions Hardware features built into CISC and RISC processors are compared below.
Figure 4.4 shows the architectural distinctions between traditional CISC and RISC. Some of the distinctions
have since disappeared, however, because processors are now designed with features from both types.
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Fig.4.4 Distinctions between typical RISC and typical CISC procm..adﬁsecmm(cpurtesy-éfﬁordoﬂadl.

Conventional CISC architecture uses a unified cache for holding both instructions and data. Therefore,
they must share the same data/instruction path. In a RISC processor, separate instruction and data caches are
used with different access paths. However, exceptions do exist. In other words, CISC processors may also
use split cache.

The use of microprogrammed control was found in traditional CISC, and hardwired controt in most RISC.
Thus control memory (ROM) was needed in earlier CISC processors, which slowed down the instruction
execution. However, modern CISC also uses hardwired control. Therefore, split caches and hardwired control
are not today exclusive in RISC machines.

Using hardwired control reduces the CPI effectively to one instruction per cycle if pipelining is carried out
petfectly. Some CISC processors also use split caches and hardwired control, such as the MC68040 and 1586.

In Table 4.1, we compare the main features of typical RISC and CISC processors. The comparison
involves five areas: instruction sets, addressing modes, register file and cache design, expected CPI, and
control mechanisms. Clock rates of modern CISC and RISC processors are comparable.

The large number of instructions used in a CISC processor is the result of using variable-format
instructions—integer, floating-point, and vector data-and of using over a dozen different addressing modes.
Furthermore, with few GPRs, many more instructions access the memory for operands. The CP1 is thus high
as a result of the long microcodes used to control the execution of some complex instructions.
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On the other hand, most RISC processors use 32-bit instructions which are predominantly register-based.
With few simple addressing modes, the memory-access cycle is broken into pipelined access operations
involving the use of caches and working registers. Using a large register file and separate I-and D-caches
benefits internal data forwarding and eliminates unnecessary storage of intermediate results. With hardwired
control, the CPl is reduced to 1 for most RISC instructions. Most recently introduced processor families have

infact been based on RISC architecture.

Table 4.1  Characteristics of Typical CISC and RISC Architectures a
Architectural - Complex Instruction Set Reduced Instruction Set
Chavracteristic Computer (CISC) Computer (RISC)
Instruction-set size and Large sét_ of instructions with Small set of instructions with
instruction formats variable formats (16-64 bits fixed (32-bit) format and most
.. pet instruction). . register-based instructions.
Addressing modes 12-24, . Limited to 3-5.
General-purpose registers 3—_24.GPRS, originally witha Large numbers (32-192) of
and cache design  unified ¢ache for instructions GPRs with mostly split data
and data, recent designs also cache and instruction cache.
‘ ‘use split caches. . -
CPI CPl betweenZ and 15 One cycle for almost all instructions
o o and an average CPI < 1.5.
CPU Control  Earlier microcoded using control - | Hardwired without control memory.
memory (ROM), but modern
_ CISCalso uses hardwired control.

4.1.3 CI5C Scalar Processors

A scalar processor executes with scalar data. The simplest scalar processor executes integer instructions using
fixed-point operands. More capable scalar processors execute both integer and floating-peint operations.
A modern scalar processor may possess both an integer unit and a floating-point unit, or even multiple such
units. Based on a complex instruction set, a CISC scalar processor can also use pipelined design.

However, the processor is often underpipelined as in the two cases shown in Figs. 4.2b and 4.2c. Major
causes of the underpipelined situations (Figs. 4.2b) include data dependence among instructions, resource
conflicts, branch penalties, and logic hazards which will be studied in Chapter 6, and further in Chapter 12.

The case in Fig. 4.2¢ is caused by using a clock cycle which is greater than the simple operation latency. In
subsequent sections, we will show how RISC and superscalar techniques can be applied to improve pipeline
performance.

Representative CISC Processors In Table 4.2, three early representative C1SC scalar processors are listed.
The VAX 8600 processar was built on a PC board. The 1486 and M68040 were single-chip microprocessors.
These two processor families are still in use at present. We use these popular architectures to explain some
interesting features built into CiSC processors. In any processor design, the designer attempts to achieve
higher throughput in the processor pipelines.
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Both hardware and software mechanisms have been developed to achieve these goals. Due to the
complexity involved in a CISC processor, the most difficult task for a designer is to shorten the clock cycle to
match the simple operation latency. This problem is easier to overcome with a RISC architecture.

L)
C(_)] Example 4.1 The Digital Equipment VAX 8600 processor
architecture

The VAX 8600 was introduced by Digital Equipment Corporation in 1985. This machine implemented a
typical CISC architecture with microprogrammed contrel. The instruction set contained about 300 instructions
with 20 different addressing modes. As shown in Fig. 4.5, the VAX 8600 executed the same instruction set,
ran the same VMS operating system, and interfaced with the same 1/O buses (such as SBI and Unibus) as the
VAX 11/780.

The CPU in the VAX 8600 consisted of two functional units for concurrent execution of integer and
floating-point instructions. The unified cache was used for holding both instructions and data. There were
16 GPRs in the instruction unit. Instruction pipelining was built with six stages in the VAX 8600, as in most
elsc machines. The instruction unit prefetched and decoded instructions, handled branching operations, and
supplied operands to the two functional units in a pipelined fashion.
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Fig.4.5 TheVAX 8600 CPU,a typical CISC processor architecture (Courtesy of Digital Equipment Corporation, 1985)

A translation lookaside buffer (TLB) was used in the memory control unit for fast generation of a physical
address from a virtual address. Both integer and floating-point units were pipelined. The performance of the
processor pipelines relied heavily on the cache hit ratio and on minimal branching damage to the pipeline flow.

The CPI of a VAX 8600 instruction varied within a wide range from 2 cycles to as high as 20 cycles. For
example, both multiply and divide might tie up the execution unit for a large number of cycles. This was
caused by the use of long sequences of microinstructions to control hardware operations.

The general philosophy of designing a CISC processor is to implement useful instsuctions in hardware/
firmware which may result in a shorter program length with a lower software overhead. However, this advantage
can only be obtained at the expense of a lower clock rate and a higher CPl, which may not pay off at all.

The VAX 8600 was improved from the earlier VAX/11 Series. The system was later further upgraded to
the VAX 9000 Series offering both vector hardware and multiprocessor options. All the VAX Series have
used a paging technique to allocate the physical memory to user programs.
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CISC Microprocessor Families In 1971, the Intel 4004 appeared as the first microprocessor based on a
4-bit ALU. Since then, Intel has produced the 8-bit 8008, 8080, and 8085, Intel’s 16-bit processors appeared
in 1978 as the 8086, 8088, 80186, and 80286. In 1985, the 80386 appeared as a 32-bit machine. The 80486
and Pentium are the latest 32-bit processors in the Intel 80x86 family.

Motorola produced its first 8-bit microprocessor, the MC6800, in 1974, then moved to the 16-bit 68000
in 1979, and then to the 32-bit 68020 in 1984. Then came the MC68030 and MC68040 in the Motorola
MC680x0 family. National Semiconductor’s 32-bit microprocessor NS32532 was introduced in 1988. These
CISC microprocessor families have been widely used in the personal computer (PC) industry, with Intel x86
family dominating.

Over the last two decades, the parallel computer industry has built systems with a large number of open-
architecture microprocessors. Both CISC and RISC microprocessors have been employed in these systems.
One thing worthy of mention is the compatibility of new models with the old ones in each of the families.

This makes it easier to port software along the series of models.
Table 4.2 lists three typical CISC processors of the year 19901,

Table 4.2 Representative CISC Scalar Processors of year 1990

Feature Intel 1486 Motorola MC6804() NS§ 32532
instruction-set size 157 insu'ﬁctions, 113 instructions, 63 instructions,
and word length 32 bits: 32 bits. 32 bits.
Addressing modes i2 _ 18 9
Integer unit 32-bit ALU 32-bit ALU 32-bit ALU
and GPRs with 8 registers. with 16 registers. _ with 8 registers.
On-chip cache(s) 8-KB umﬁed cache 4-KB code cache 512-B code cache
and MMUs for both code and data. 4-KB data cache - 1-KB data cache.

with separate MMUs. _
Floating-point On-chip with . On-chip with 3 Off-chip FPU
unit, registers, 8 FP registers pipeline stages, NS 32381, or
and function units adder, multiplier, shifter. 8 80-bit FP registers. WTL 3164.
Pipeline stages 5 6 4
Protection levels 4 2 2
Memory ‘Segmented paging Paging with 4 or 8 Paging with
organization and with 4 KB/page KB/page, 64 entries 4 KB/page,
TLB/ATC entries and 32 entries in TLB. in each ATC. 64 entries,
Technology, CHMOS TV, 0.8—um HCMOS, 1.25—um CMOS
clock rate, 25 MHz, 33 MHz, 1.2 M transistors, 370K transistors,
packaging, and 1.2M transistors, 20 MHz, 40 MHz, 30 MHz,
year introduced 168 pins, 1989, 179 pins, 1990. 175 pins, 1987,
Claimed 24 MIPS at 25 MHz, 20 MIPS at 25 MHz, 15MIPS
performance 30 MIPS at 60 MHz. “at 30 MHz.

2] Motorola microprocessors are at presently built and marked by the divested company Freescale.
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Obk)
C 3 “ Example 4.2 The Motorola MC68040 microprocessor
architecture

The MC68040 is a 0.8-um HCMOS microprocessor containing more than 1.2 million transistors, comparable
to the i80486. Figure 4.6 shows the MC68040 architecture. The processor implements over 100 instructions
using 16 geueral-purpose registers, a 4-Kbyte data cache, and a 4-Kbyte instruction cache, with separate
memory management units (MMUs) supported by an address translation cache (ATC), equivalent to the

TLB used in other systems. The data formats range from 8 to 80 bits, with provision for the IEEE floating-
point standard.
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Fig.4.6 Architecture of the MC68040 processor {Courtesy of Motorola Inc., 1991)

Eighteen addressing modes are supported, including register direct and indirect, indexing, memory
indirect, program counter indirect, absolute, and immediate modes. The instruction set includes data
movement, integer, BCD, and floating pomt arithmetic, logical, shifting, bit-field manipulation, cache
maintenance, and multiprocessor communications, in addition to program and system control and memory
management instructions.
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The integer unit is organized in a six-stage instruction pipeline. The floating-point unit consists of three
pipeline stages (details to be studied in Section 6.4.1). All instructions are decoded by the integer unit.
Floating-point instructions are forwarded to the floating-point unit for execution.

Separate instruction and data buses are used to and from the instruction and data memory units,
respectively. Dual MMUs allow interleaved fetch of instructions and data from the main memory. Both the
address bus and the data bus are 32 bits wide.

Three simultaneous memory requests can be generated by the dual MMUs, including data operand read
and write and instruction pipeline refiil. Snooping logic is built into the memory units for monitoring bus
events for cache invalidation.

The complete memory management is provided with support for virtual demand paged operating system.
Each of the two ATCs has 64 entries providing fast translation from virtual address to physical address. With
the CISC complexity involved, the M68040 does not provide delayed branch hardware support, which is
often found in RISC processors like Motorola’s own M88100 microprocessor.

4.1.4 RISC Scalar Processors

Generic RISC processors are called scalar RISC because they are designed to issue one instruction per
cycle, similar to the base scalar processor shown in Fig. 4.2a. In theory, both RISC and CISC scatar
processors should perform about the same if they run with the same clock rate and with equal program
length. However, these two assumptions are not always valid, as the architecture affects the quality and
density of code generated by compilers.

The RISC design gains its power by pushing some of the less frequently used operations into software.
The reliance on a good compiler is much more demanding in a RISC processor than in a CISC processor.
Instruction-level parallelism is exploited by pipelining in both processor architectures.

Without a high clock rate, a low CPI, and good compilation support, neither CISC nor RISC can perform
well as designed. The simplicity introduced with a RISC processor may lead to the ideal performance of the
base scalar machine modeled in Fig. 4.2a.

Representative RISC Processors Four representative RISC-based processors from the year 1990, the
Sun SPARC, Intel i860, Motorola M88100, and AMD 29000, are summarized in Table 4.3. All of these
processors use 32-bit instructions. The instruction sets consist of 51 to 124 basic instructions. On-chip
floating-point units are built into the 1860 and M88100, while the SPARC and AMD use off-chip floating-
point units. We consider these four processors as generic scalar RISC, issuing essentially only one instruction
per pipeline cycle.

Among the four scalar RISC pi‘ocessors, we choose to examine the Sun SPARC and i860 architectures
below. SPARC stands for scalable processor architecture. The scalability of the SPARC architecture refers
to the use of a different number of register windows in different SPARC implementations.

This is different from the M88100, where scalability refers to the number of special function units (SFUs)
implementable on different versions of the M88000 processor. The Sun SPARC is derived from the original
Berkeley RISC design.
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Table 4.3 Representative RISC Scalar Processors of year 1990

Advanced Computer Architecture

Feature Sun SPARC CY7C601 Intel i860 Motorola M 88100 AMD 29000
Instruction 69 instructions, 82 instructions, 51 instructions, 7 112 instructions,
set, formats, 32-bit format, 7 data 32-bit format, 4 data types, 3 instr. 32-bit format, all
addressing types, 4-stage instr. addressing modes. formats, 4 addressing | registers indirect
modes. pipeline. modes. addressing.

Integer unit, 32-bit RISC/TU, 136 32-bit RISC core, 32 32-bit IU with 32 32-bit IU with 192
GPRs. registers divided into registers. GPRs and registers without

8 windows. scoreboarding. windows.
Caches(s), Offchip cache/MMU | 4-KB code, 8-KB “Off-chip M88200 On-chip MMU with
MMU, and on CY7C604 with data, on-chip' MMU, caches/MMUSs, 32-entry TLB, with
memory 64-entry TLB. paging with 4 segmented paging, 4-word prefetch
organization. KB/page. 16-KB cache. buffer and 512-B

Cn branch target cache.

Floating- Off-chip FPU on On-chip 64-bit FP Oﬁ-ch_ip FPU adder, | Off-chip FPU on
point unit CY7C602, 32 muitiplier and FP - mulsiplier with 32 AMD 29027, on-chip
registers and registers, 64-bit adder with 32 FP FP registers and FPU withAMD
functions pipeline (equiv. 10 registers, 3-D 64-bit arithmetic. 29050.

TI8848). graphics unit.
Operation Concurrent 1U and Allow dual Concurrent IU, FPU | 4-stage pipeline
modes FPU operations. instructions and dual | . and memory access ProCessor.

FP operations. with delayed branch.

Technology, 0.8-um CMOS IV,33 1-um CHMOS IV, 1-um HCMOS, 1.2M | 1.2-um CMOS, 30
clock rate, MHz, 267 pins, 1989. over | M transistors, transistors, 20 MHz, | MHz, 40 MHz, 169
packaging, 40 MHz, 168 pins, 180 pins, 1988. pins, 1983,
and year 1989
Claimed 24 MIPS for 33 MHz | 40 MIPS and 60 17 MIPS and 6 27 MIPS at 40 MHz,
performance version, 50 MIPS for Mflops for 40 MHz, Mflops at 20 MHz, new version AMD

80 MHz ECL 1860/XP announced up to 7 special 2905¢ at 55 MHz in

version. Up to 32 in 1992 with 2.5M function units could 1990.

register windows can transistors. be configured.

be bult,

L
& : Example 4.3 The Sun Microsystems SPARC architecture

The SPARC has been implemented by a number of licensed manufacturers as summarized in Table 4.4.
Different technologies and window numbers are used by different SPARC manufacturers. Data presented is
from around the year 1990.
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Table 4.4  SPARC Implementations by Licensed Manufacturers (1990)

SPARC Technology Clock . Claimed . Remarks
Chip | Rate (MiHz) VAXMIPS
Cypress 0.84m 33 24 CY7C602 FPU with
CY7C601 CMOS IV, 4.5 Mflops DP Linpack,
U 207 pins. _ A CY7C604 Cache/MMC,
' o CY7C157 Cache.
Fujitsu MB 1.2-pim ‘ 25 15 MB 86911 FPC FPC
86901 1U CMOS, 179 and TI 8847 FPP,
pins, MB86920 MMU, 2.7
' ' Mflops DP Linpack by
_ FPU.
LSI Logic 10-pm . 33 .20 L64814 FPU, L64815
L64811  HCMOS, 179 _ MMU.
pins. '
TI 8846 0.8-um CMOS EX T 24 42 Mflops DP Linpack
on T1-8847 FPP.
BIT IU ECL family. 80 50 15 Mflops DP Linpack
B-3100 _ . o on FPUs: B-3120 ALU,
' o - B-3611 FP
Multiply/Divide.

At the ime, all of these manufacturers implemented the floating-point unit (FPU) on a separate coprocessor
chip. The SPARC processor architecture contains essentially a RISC integer unit (IU) implemented with 2
to 32 register windows.

We choose to study the SPARC family chips produced by Cypress Semiconductors, Inc. Figure 4.7 shows
the architecture of the Cypress CY7C601 SPARC processor and of the CY7C602 FPU. The Sun SPARC
instruction set contains 69 basic instructions, a significant increase from the 39 instructions in the original
Berkeley RISCI! instruction set.

The SPARC runs each procedure with a set of thirty-two 32-bit [U registers. Eight of these registers are
global registers shared by all procedures, and the remaining 24 are window registers associated with only
each procedure. The concept of using overlapped register windows is the most important feature introduced
by the Berkeley RISC architecture.

The concept is illustrated in Fig. 4.8 for eight overlapping windows (formed with 64 local registers and
64 overlapped registers) and eight globals with a total of 136 registers, as implemented in the Cypress 601.

Each register window is divided into three eight-register sections, labeled Ins, Locals, and Outs. The local
registers are only locally addressable by each procedure. The Ins and Outs are shared among procedures,

The calling procedure passes parameters to the called procedure via its Outs (r8 to 11 5) registers, which are
the Ins registers of the called procedure. The window of the currently ninning procedure is called the active
window pointed to by a current window pointer. A window invalid mask is used to indicate which window is
invalid. The trap base register serves as a pointer to a trap handler.
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{a) The Cypress CY7C601 SPARC processor
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{b) The Cypress CY7CE02 floating-point unit

Fig41 “Fhe SPARC architacture with the mmrmd:heﬂmunwommmmmmdﬁps{twm
&Cyp«w Sankondmrﬂnﬂ')ﬂ} B

A special register is used to create a 64-bit product in multiple step instructions. Procedures can also be
called without changing the window. The overlapping windows can significantly save the time required for
interprocedure communications, resulting in much faster context switching among couperative procedures.
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The FPU features 32 single-precision (32-bit) or 16 double-precision (64-bit) floating-point registers
(Fig. 4.7b). Fourteen of the 69 SPARC instructions are for floating-point operations. The SPARC architecture
implements three basic instruction formats, all using a single word length of 32 bits.

31] 7123] 15

Previcus Window . Ins . Locals | l0uts
24] 16] 8]
r(31) 231 15]
Active Window | I Ins . Locals | IOuts
r{24] r16] r{8}
{31] 23] r[15]
Next Window . Ins . Locals {  *Outs
rf24) r[16) 8]
]
I1-:7Glt:>l‘.>ais
0]

(a) Three overlapping register windows and the globals registers

cwp

\

(b) Eight register windows forming a circular stack

Fig.4.8 . The concept of overlapping register windows in the SPARC architecture (Courtesy of Sun Microsystems,
inc., 1987) ‘ : -

Table 4.4 shows the MIPS rate relative to that of the VAX 11/780, which has been used as a reference
machine with 1 MIPS. The 50-MIPS rate is the result of ECL implementation with a 80-MHz clock. A GaAs
SPARC was reported to yield a 200-MIPS peak at 200-MHz clock rate.
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& Example 4.4 The Intel i860 processor architecture

In 1989, Inte! Corporation introduced the i860 microprocessor. It was a 64-bit RISC processor fabricated on
a single chip containing more than 1 million transistors. The peak performance of the 1860 was designed to
reach 80 Mflops single-precision or 60 Mflops double-precision, or 40 MIPS in 32-bit integer operations at
a 40-MHz clock rate.

A schematic block diagram of major components in the i860 is shown in Fig. 4.9. There were nine
functional units (shown in nine boxes) interconnected by multiple data paths with widths ranging from 32 to
128 bits.

External Address 35

- |

Instruction Cache M Memory ; Data Cache
(4K Bytes) a"%gn";;“e“ (8K Bytes)
Inst. ] Data Cache
Tﬂgm. .M Data
FP Instruction 128
64 =
ore 4
Instruction 3dp2 37 (32 3
RISC Floating point
External . f
Data . Bus lj:r:::{\trol Integer Unit Control Unit
64 Core Registers FP Registers
644 64 64
Dest Y
Src
Src2
¢ i
Ki
T Kr
¥ Y
Y 1
Graphics Unit Pipelined Pipelined
, Adder Unit Muttiplier
Merge Register Unit

Fig.49' Functinal uinits and data paths of the Incel 1860 RISC microprocessor {Courtesy of Incel Corporation,
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All external or internal address buses were 32-bit wide, and the external data path or internal data bus was
64 bits wide. However, the internal RISC integer ALU was only 32 bits wide. The instruction cache had
4 Kbytes organized as a two-way set-associative memory with 32 bytes per cache block. It transferred 64 bits
per clock cycle, equivalent to 320 Mbytes/s at 40 MHz. _

The data cache was a two-way set-associative memory of 8 Kbytes. It transferred 128 bits per clock cycle
(640 Mbytes/s) at 40 MHz. A write-back policy was used. Cacheing could be inhibited by software, if needed.
The bus control unit coordinated the 64-bit data transfer between the chip and the outside world.

The MMU implemented protected 4 Kbyte paged virtual memory of 232 bytes via a TLB. The paging and
MMU structure of the 1860 was identical to that implemented in the i486. An i860 and an i486 could be used
Jointly in a heterogeneous multiprocessor system, permitting the development of compatible OS kernels. The
RISC integer unit executed /oad, store, integer, bit, and control instructions and fetched instructions for the
floating-point control unit as well.

There were two floating-point units, namely, the muitiplier unit and the adder unit, which could be used
separately or simultaneously under the coordination of the floating-point control unit. Special dual-operation
floating-point instructions such as add-and-multiply and subtract-and-multiply used both the multiplier and
adder units in parallel (Fig. 4.10).

Destination
S 1 Kr Source 2
owce 1 [ K] "
Op1 Op2
Multiply Unit (SP)
Result
Kr x Source 2
J—}
Op1 Op2
Adder Unit
Result
|-

Kr x Source 2 + Source 1

Fig. 4.10 . Dual floating-point operations in the i860 processor

Furthermore, both the integer unit and the floating-point control unit could execute concurrently. In this
sense, the i860 was also a superscalar RISC processor capable of executing two instructions, one integer
and one floating-point, at the same time. The floating-point unit conformed to the IEEE 754 floating-point
standard, operating with single-precision (32-bit) and double-precision (64-bit) operands.

The graphics unit executed integer operations corresponding to 8-, 16-, or 32-bit pixel data types. This
unit supported three-dimensional drawing in a graphics frame buffer, with color intensity, shading, and
hidden surface elimination. The merge register was used only by vector integer instructions. This register
accumulated the results of multiple addition operations.
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The i860 executed 82 instructions, including 42 RISC integer, 24 floating-point, 10 graphics, and
6 assembler pseudo-operations. All the instructions executed in one cycle, i.e. 25 ns for a 40-MHz clock
rate. The 1860 and its successor, the i860XP, were used in floating-point accelerators, graphics subsystems,
workstations, multiprocessors, and multicomputers. However, due to the market dominance of Intel’s own
x86 family, the i860 was subsequently withdrawn from production.

The RISC Impacts  The debate between RISC and CISC designers lasted for more than a decade. Based on
Eq. 1.3, it seems that RISC will outperform CISC if the program length does not increase dramatically. Based
on one reported experiment, converting from a CISC program to an equivalent RISC program increases the
code length (instruction count) by only 40%.

Of course, the increase depends on program behavior, and the 40% increase may not be typical of ail
programs. Nevertheless, the increase in code length is much smaller than the increase in clock rate and the
reduction in CPL Thus the intuitive reasoning in Eq. 1.3 prevails in both cases, and in fact the RISC approach
has proved its merit.

Further processor improvements include full 64-bit architecture, multiprocessor support such as snoopy
logic for cache coherence control, faster interprocessor synchronization or hardware support for message
passing, and special-function units for /O interfaces and graphics support.

The boundary between RISC and CISC architectures has become blurred because both are now imple-
mented with the same hardware technology. For example. starting with the VAX 9000, Motorola 88100, and
Intel Pentium, CISC processors are also built with mixed features taken from both the RISC and CISC camps.

Further discussion of relevant issues in processor design will be continued in Chapter 13.

74.2]] SUPERSCALARANDVECTOR PROCESSORS

]
;;

A CISC or a RISC scalar processor can be improved with a superscalar or vector architecture.
Scalar processors are those executing one instruction per cycle. Only one instruction is issued
per cycle, and only one completion of instruction is expected from the pipeline per cycle.

In a superscalar processor, multiple instructions are issued per cycle and multiple results are generated per
cycle. A vector processor execules vector instructions on arrays of data; each vector instruction involves a
string of repeated operations, which are ideal for pipelining with one result per cycle.

4.2.1 Superscalar Processors

Superscalar processors are designed to exploit more instruction-level parallelism in user programs. Only
independent instructions can be executed in parallel without causing a wait state. The amount of instruction-
level parallelism varies widely depending on the type of code being executed.

It has been observed that the average value is around 2 for code without loop unrolling. Therefore, for these
codes there is not much benefit gained from building a machine that can issue more then three instructions
per cycle. The instruction-issue degree in a superscalar processor has thus been limited to 2 to 5 in practice.
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Pipelining in Superscalar Processors The fundamental structure of a three-issue superscalar pipeline
is illustrated in Fig. 4.11. Superscalar processors were originally developed as an alternative to vector
processors, with a view to exploit higher degree of instruction level paralielism.

1 | 1 I I
I lfetch Decode Execute Write

back

VR W RS IR IRV SO MU ST ¢ -~
0 t 2 3 4 5 6 7 8 9 TmeinBaseCycles

Fig 411 A superscalar processor of degree m = 3

A superscalar processor of degree m can issue m instructions per cycle. In this sense, the base scalar
processor, implemented either in RISC or CISC, has m = 1. In order to fully utilize a superscalar processor of
degree m, m instructions must be executable in parallel. This situation may not be true in all clock cycles. In
that case, some of the pipelines may be stalling in a wait state.

In a superscalar processor, the simple operation latency should require only one cycle, as in the base scalar
processor. Due to the desire for a higher degree of instruction-level parallelism in programs, the superscalar
processor depends more on an optimizing compiler to exploit parallelism. Table 4.5 lists some landmark
examples of superscalar processors from the early 1990s.

A typical superscalar architecture for a RISC processor is shown in Fig. 4.12.

The instruction cache supplies multiple instructions per fetch. However, the actual number of instructions
issued to vartous functional units may vary in each cycle. The number is constrained by data dependences
and resource conflicts among instructions that are simultaneously decoded. Multiple functional units are built
into the integer unit and into the floating-point unit.

Multiple data buses exist among the functional units. In theory, all functional units can be simultancously
used if conflicts and dependences do not exist among them during a given cycle.

Representative Superscalar Processors A number of commercially available processors have been
implemented with the superscalar architecture. Notable early ones include the IBM RS/6000, DEC Alpha
21064, and Intel i1960CA processors as summarized in Table 4.5. Due to the reduced CPI and higher clock
rates used, generally superscalar processors outperform scalar processors.

The maximum number of instructions issued per cycle ranges from two to five in these superscalar
processors. Typically, the register files in the IU and FPU each have 32 registers. Most superscalar processors
implement both the TU and the FPU on the saftie chip. The superscalar degree is low due to limited instruction
parallelism that can be exploited in ordinary programs.

Besides the register files, reservation stations and reorder buffers can be used to establish instrucrion
windows. The purpose is to support instruction lookahead and internal data forwarding, which are needed



152" Tkl

Advanced Computer Architecture

to schedule multiple instructions simultaneously. We will discuss the use of these mechanisms in Chapter 6,
where advanced pipelining techniques are studied, and further in Chapter 12.

Table 4.5  Representative Superscalar Processors {circa 1990)

Feature Intel IBM DEC Alpha
i966CA RS/6000 21064
Technology, 25 MHz 1986. 1-pm CMOS 0.75~-um CMOS, 150
clock rate, technology, 30 MHe, MHz, 431 pins, 1992.
year 1990.
Functional Issue up to 3 POWER - Alpha architecture,
units and instructions (register, architecture, issue 4 issue 2 instructions per
multiple memory, and instructions (1 FXU, cycle, 64-bit TU and
instruction control) per cycle, 1 FPU, and 2 ICU FPU, 128-bit data bus,
issues seven funac_ti(n'lal= operations) per cycle. " anid 34-bit address bus
units available for implemented in initial
‘concurrentuse. ' version.
Registers, I-KB Icache, 1.5-KB | 32 32-bit GPRs, 32 64-bit GPRs, 8-KB
caches, MMU, RAM, 4-channel /O |  8-KB I-cache, 64-KB I-cache, 8-KB D-cache,
address space with DMA, parallel o D-cache with 64-bit virtual space
decode, multiported separate TLBs. designed, 43-bit
registers. " address space
o implemented in initial
versioh.
Floating- On-chip FPU, fast On-chip FPU 64-bit On-chip FPU, 32
point unit multimode interrupt, multiply, add, divide, 64-bit FP registers,
and functions multitask control. subtract, [EEE 754 10-stage pipeline,
standard. IEEE and VAX FP
standards.
Clzimed per- 30 VAX/MIPS peak ' 34 MIPS and 300 MIPS peak and
formance and at 25 MHz, real-time- 11 Mflops at 25 MHz - 150 Mflops peak at 150
remarks embedded system on POWER station 530. MH?z, multiprocessor
control, asd and cache coherence
multiprocessor support.
applications.

Note: KB = Kbytes, FP = floating point.
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Fig.4.12 A typical superscalar RISC processor architecture consisting of an integer unit and a floating-point
unit (Courtesy of M. johnson, 1991; reprinted with permission from Prentice-Hall, Inc.)

r

L
& Example 4.5 The IBM RS/6000 architecture

In early 1990, IBM announced the RISC System 6000. It was a superscalar processor as illustrated in
Fig. 4.13, with three functional units calied the branch processor, fixed-point unit, and floating-point unit,
which could operate in parallel.
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The branch processor could arrange the execution of up to five instructions per cycle. These included one
branch instruction in the branch processor, one fixed-point instruction in the FXU, one condition-register
instruction in the branch processor, and one floating-point multiply-add instruction in the FPU, which could
be counted as two fioating-point operations.

Instruction Cache
» Branch Procesor (8 K Bytes)
b
i l instructions
Fixed-point Floating-point
Processor Processor
1 Y
¥ 32
A 32 red 1 64 32
Programmed Y ¥
i fiioe |
vo . sg:rl?ge Data Cache
..;,, Interface (64K Bytes)
[y 3
Direct CPU
128 |, Memory o8
______ Access 4 _ __ . __ 4 __

Main Memory (8 to 128 MBytes)

Fig. 413 The POWER architecture of the TBM RISC. Systen/6000 supefscalar processor (Courtesy of

As any RISC processor, RS/6000 used hardwired rather than microcoded control logic. The system used a
number of wide buses ranging from one word (32 bits) for the FXU to two words (64 bits) for the FPU, and
four words for the I-cache and D-cache, respectively. These wide buses provided the high instruction and data
bandwidths required for superscalar implementation.

The RS/6000 design was optimized to perform well in numerically intensive scientific and engineering
applications, as well as in multiuser commercial environments. A number of RS/6000-based workstations
and servers were produced by IBM. For example, the POWERstation 530 had a clock rate of 25 MHz with
performance benchmarks reported as 34.5 MIPS and 10.9 Mflops. In subsequent years, these systems were
developed into a series of RISC-based server products. See also Chapter 13.

4.2.2 TheVLIW Architecture

The VLIW architecture is generalized from two well-established concepts: horizontal microcoding and
superscalar processing. A typical VLIW (very long instruction word) machine has instruction words
hundreds of bits in length. As illustrated in Fig. 4.14a, multiple functional units are used concurrently in
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a VLIW processor. All functional units share the use of a common large register file. The operations to be
simultaneously executed by the functional units are synchronized in a VLIW instruction, say, 256 or 1024
bits per instruction word, an early example being the Multiflow computer modets,

Different fields of the long instruction word carry the opcodes to be dispatched to different functional
onits. Programs written in conventional short instruction words (say 32 bits) must be compacted together to
form the VLIW instructions. This code compaction must be done by a compiler which can predict branch
outcomes using elaborate heuristics or run-time statistics.

Main

Memory ] Register File

[ y ¥ F v f

g?c?rdei :.;‘1 ease [|iNnteger Branch
Unit Unit AlLU Unit

Load/Store | FP Add |FP Multiply | Branch | e+ |Integer ALU

(a) A typical VLIW processor with degree m = 3
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(. - ] ifeich Decode Execute  Write
— 3 operations  back
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(b} VLIW execution with degree m = 3

Fig. 4.14 mmdawqmmmmmadmmm
{Courtesy of Multiflow Compiner; Inc., 1987)

Pipelining in VLIW Processors The execution of instructions by an ideal VLIW processor is shown in
Fig. 4.14b. Each instruction specifies multiple operations. The effective CPI becomes 0.33 in this particular
example. VLIW machines behave much like superscalar machines with three differences: First, the decoding
of VLIW ipstructions is easier than that of superscalar instructions.

Second, the code density of the superscalar machine is better when the available instruction-level parallelism
is less than that exploitable by the VLIW machine. This is because the fixed VLIW format includes bits for
non-executable operations, while the superscalar processor issues only executable instructions.
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Third, a superscalar machine can be object-code-compatible with a large family of non-parallel machines.
On the contrary, a VLIW machine exploiting different amounts of parallelism would require different
instruction sets.

Instruction parallelism and data movement in a VLIW architecture are completely specified at compile
time. Run-time resource scheduling and synchronization are in theory completely eliminated. One can view
a VLIW processor as an extreme example of a superscalar processor in which all independent or unrelated
operations are already synchronously compacted together in advance. The CPI of a VLIW processor can
be even lower than that of a superscalar processor. For example. the Multiflow trace computer allows up to
seven operations to be executed concurrently with 256 bits per VLIW instruction.

VLIW Opportunities In a VLIW architecture, random parallelism among scalar operations is exploited
instead of regular or synchronous parallelism as in a vectorized supercomputer or in an SIMD computer.
The success of a VLIW processor depends heavily on the efficiency in code compaction, The architecture is
totally incompatible with that of any conventional general-purpose processor.

Furthermore, the instruction parallelism embedded in the compacted code may require a different latency
to be executed by different functional units even though the instructions are issued at the same time. Therefore,
different implementations of the same VLIW architecture may not be binary-compatible with each other.

By explicitly encoding parallelism in the long instruction, a VLIW processor can in theory eliminate the
hardware or software needed to detect parallelism. The main advantage of VLIW architecture is its simplicity
in hardware structure and instruction set. The VLIW processor can potentially perform well in scientific
applications where the program behavior is more predictable.

In general-purpose applications, the architecture may not be able to perform well. Due to its lack of
compatibility with conventional hardware and software, the VLIW architecture has not entered the mainstream
of computers. Although the idea seems sound in theory, the dependence on trace-scheduling compiling and
code compaction has prevented it from gaining acceptance in the commercial world. Further discussion of
this concept will be found in Chapter 12.

4.2.3 Vector and Symbolic Processors

By definition, a vector processor is specially designed to perform vector computations, A vector instruction
involves a large array of operands. In other words, the same operation will be performed over an array or a
string of data. Specialized vector processors are genetally used in supercomputers.

A vector processor can assume either a register-to-register architecture or a memory-fo-memory
architecture. The former uses shorter instructions and vector register files. The latter uses memory-based
instructions which are longer in length, including memory addresses.

Vector Instructions Register-based vector instructions appear in most register-to-register vector processors
like Cray supercomputers. Denote a vector register of length » as Vf, a scalar register as s;, and a memory
array of length n as M(1 : n). Typical register-based vector operations are listed below, where a vector
operator is denoted by a small circle o™

v, 0 ¥V, - ¥, {binary vector}
51 o Vi —> A (scaling)
Vi 0 Vv, - 5 {binary reduction)
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M :n) — V), (vector load) (4.1)
A\ - M(l :n) {vector store)

A\ - V, (unary vector)

Vv, - 5 (unary reduction)

It should be noted that the vector length should be equal in the two operands used in a binary vector
instruction. The reduction is an operation on one or two vector operands, and the result is a scalar—such as
the dot product between two vectors and the maximum of all components in a vector.

In all cases, these vector operations are performed by dedicated pipeline units, including functional
pipelines and memory-access pipelines. Long vectors exceeding the register length » must be segmented to
fit the vector registers » elements at a time.

Memory-based vector operations are found in memory-to-memory vector processors such as those in the
early supercomputer CDC Cyber 205. Listed below are a few examples:

M(l:iny o M(l:» - M({l:n)
51 0o M{(l:m — M(1:n)
o M(l:n - My (1 :n) 4.2)
M(l:n)y o M(l:n) - M (k)

where M\(1 : n) and M,(1 : n) are two vectors of length » and M(%) denotes a scalar quantity stored in memory
location k. Note that the vector length is not restricted by register length. Long vectors are handled in a
streaming fashion using super words cascaded from many shorter memory words.

Vector Pipelines  Vector processors take advantage of unrolled-loop-level parallelism. The vector pipelines
can be attached to any scalar or superscalar processor.

Dedicated vector pipelines eliminate some software overhead in looping control. Of course, the
effectiveness of a vector processor relies on the capability of an optimizing compiler that vectorizes sequential
code for vector pipelining. Typically, applications in science and engineering ¢an make good use of vector
processing capabilities.

The pipelined execution in a vector processor is compared with that in a scalar processor in Fig. 4.15.
Figure 4.15a is a redrawing of Fig. 4.2a in which each scalar instruction executes only one operation over
one data element, For clarity, only serial issue and parallel execution of vector instructions are illustrated in
Fig. 4.2b. Each vector instruction executes a string of operations, one for each element in the vector.

We will study vector processors and SIMD architectures in Chapter 8. Various functional pipelines and
their chaining or networking schemes will be introduced for the execution of compound vector functions.
Many of the above vector instructions also have equivalent counterparts in an SIMD computer. Vector
processing is achieved through efficient pipelining in vector supercomputers and through spatial or data
parallelism in an SIMD computer.

Symbolic Processors Symbolic processing has been applied in many areas, including theorem proving,
pattern recognition, expert systems, knowledge engineering, text refrieval. cognitive science, and machine
intelligence. In these applications, data and knowledge representations, primitive operations, algorithmic
behavior, memory, [/O aﬁnmunications’, amd-special architectural features are different than in numerical
computing. Symbolic processors have also been called prolog processors, Lisp processors, or symbolic
manipulators. Table 4.6 summarizes these characteristics.



Advanced Computer Architecture

[ ] I 1 ]

ffotch Daecoda Execute Write back

Successive ]
Instructions ! ]
1 ] J 1 i | | ] | ] | | -
6 4 2 3 4 5 B 7 8 9 10 11 12 13 Timein Base Cycles
(a} Scalar pipeline execution (Fig. 4.2a redrawn)
— 1 ]
{ 1 1
] I —T1
1 1
1 — ]
— | S —
— 1
| —
. L1 [
Successive
Instructions Time in Base Cycles
) S A NN SO N NN N ENN N R E
0 1 2 3 4 5 6 7 & 9 10 1 12 13 14 15

(b) Vector pipeline execution

Flg.-ﬂs Plpeﬁnedemudonmammwmmammmwmw-(mumsyd
}nuwtdealtmpriﬂmdﬁnmProcASPLOSACMPress.lm) o

Table 4.6 Characteristics of Symbolic Processing

Attributes

Charactenstzcs

Knowledge Representations

- Lists, relational databases, smpts, semantic nets &ames blackboards,

objects, production systems.

Common Operations

Search, sort, pattern matching, filtering, contexts, partitions, ransitive
closures, unification, text retrieval, set operations, reasoning.

Memory Requirements

Large memory with intensive access pattsrn. Addressing is often content

- baged. Locality of veference may not hold.

Communication Patterns

Mmagckaﬁem«inmmmgzmﬂmandfmmatof
mmﬁumwmwﬁanm

Properties of Algorithms decmrmnﬂmc possibly parallel and distributed computations. Data
dependences may be gmbﬂ and frregularin pattern and granularity.

Input/Output requirements User-guided programs; inteltigent pcmowmachme interfaces; inputs can
ummmuwumwm»mw

Architecture Features * Parallel updm of iu'ge knwmdge bases, djmmc load bahncmg; dynamic

memery atlocation; buﬁwwamoma garbageooﬁectmn suckprocessor
architecture; symbohcpmccm : -
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For example, a Lisp program can be viewed as a set of functions in which data are passed from function
to function. The concurrent execution of these functions forms the basis for parallelism. The applicative and
recursive nature of Lisp requires an environment that efficiently suppotts stack computations and function
calling. The use of linked lists as the basic data structure makes it possible to implement an automatic garbage
collection mechanism.

Instead of dealing with numerical data, symbolic processing deals with logic programs, symbolic lists,
objects, scripts, blackboards, production systems, semantic networks, frames, and artificial neural networks.

Primitive operations for artificial intelligence include search, compare, logic inference, pattern matching,
unification, filtering, context, retrieval, set operations, transitive closure, and reasoning operations. These
operations demand a special instruction set containing compare, matching, logic, and symbolic manipulation
operations. Floating point operations are not often used in these machines.

Sb)

The processor architecture of the Symbotlics 3600 is shown in Fig. 4.16. This was a stack-oriented machine.
The division of the overall machine architecture into layers allowed the use of a simplified instruction-set
design, while implementation was carried out with a stack-oriented machine. Since most operands were
fetched from the stack, the stack buffer and scratch-pad memories were implemented as fast caches to main
memoty.

Example 4.6 The Symbolics 3600 Lisp processorm

ABus
| Registers & o Tag
| Scratchpad s “"™ Processor
| Stack : * Fixed-point
Buffer My ----» Processor
B Bus
Operand
Selector -
Current R - Floapr;g-
Instruction B
Processor
Main | Garbage
Memory - "1 Collector

Fig. 416 The architacture of the Symbolics 3600 Lisp processor (Courtésy of Symbolics, Inc., 1985)

Bl The company Symbolics has since gone out of business, but the Al concepts it employed and developed are still valid.
On a general-purpose computer, these concepts would be implemented in software.
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The Symbolics 3600 executed most Lisp instructions in one machine cycle. Integer instructions fetched
operands form the stack buffer and the duplicate top of the stack in the scratch-pad memory. Floating-point
addition, garbage collection, data type checking by the tag processor, and fixed-point addition could be
carried out in parallel.

In a typical computer configuration, the cost of memory, disks, printers, and other peripherals
often exceeds that of the processors. We briefly introduce below the memory hierarchy and
peripheral technology.

4.3.1 Hierarchical Memory Technology

Storage devices such as registers, caches, main memory, disk devices, and backup storage are often organized
as a hierarchy as depicted in Fig. 4.17. The memory technology and storage organization at each level are
characterized by five parameters: the access time (t;), memory size (s;}, cost per byte (c), transfer bandwidth
(b;), and unit of transfer (x;).

The access time #; refers to the round-trip time from the CPU to the ith-level memory. The memory size s;
is the number of bytes or words in leve! i. The cost of the ith-level memory is estimated by the product ¢;5;.
The bandwidth b; refers to the rate at which information is transferred between adjacent levels. The unit of
transfer x; refers to the grain size for data transfer between levels fand i + 1.

T " T
egisters
Level 0 in CPU

Main Memory
Level 2 (dRAMS)

Increase in cost per bit

Level 3 Disk Storage
eve (Solid-state, Magnetic)

Increase in capacity and access time

Backup Storage
{Magnetic Tapes, Optical Disks)

i-——— Capacity —-——|

Fig. 4.17 A four-level memory hierarchy with increasing capacity and decreasing speed and cost from low to
high levels : '

Level 4

.
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Memory devices at a lower level are faster to access, smaller in size, and more expensive per byte, having
& higher bandwidth and using a smaller unit of transfer as compared with those at a higher level. In other
words, we have £, | <t, 5,4 <s;, ¢ > ¢, by > biand x; | <ux, fori=1,2,3, and 4, in the hierarchy where
i =0 corresponds to the CPU register level. The cache is at level 1, main memory at level 2, the disks at level
3, and backup storage at level 4. The physical memory design and operations of these levels are studied in
subsequent sections and in Chapter 5.

Registers and Caches The registers are parts of the processor; multi-level caches are built either on the
processor chip or on the processor board. Register assignment is made by the compiler. Register transfer
operations are directly controlled by the processor after instructions are decoded. Register transfer is
conducted at processor speed, in one clock cycle.

Therefore, many designers would not consider registers a level of memory. We list them here for
comparison purposes. The cache is controlled by the MMU and is programmer-transparent, The cache can
also be implemented at one or multiple levels, depending on the speed and application requirements. Over
the last two or three decades, processor speeds have increased at a much faster rate than memory speeds.
Therefore multi-level cache systems have become essential to deal with memoty access latency.

Main Memory The main memory is sometimes called the primary memory of a computer system. It is
usually much larger than the cache and often implemented by the most cost-effective RAM chips, such as
DDR SDRAMs, i.e. dual data rate synchronous dynamic RAMs. The main memory is managed by a MMU
in cooperation with the operating system.

Disk Drives and Backup Storage The disk storage is considered the highest level of on-line memory.
It holds the system programs such as the OS and compilers, and user programs and their data sets. Optical
disks and magnetic tape units are off-line memory for use as archival and backup storage. They hold copies
of present and past user programs and processed results and files. Disk drives are also available in the form
of RAID arrays.

A typical workstation computer has the cache and main memory on a processor board and hard disks
in an attached disk drive. Table 4.7 presents representative values of memory parameters for a typical
32-bit mainframe computer built in 1993. Since the time, there has been one or two orders of magnitude
improvement in most parameters, as we shall see in Chapter 13.

Peripheral Technology Besides disk drives and backup storage, peripheral devices include printers,
plotters, terminals, monitors, graphics displays, optical scanners, image digitizers, output microfilm devices,
etc. Some /O devices are tied to special-purpose or multimedia applications.

The technology of peripheral devices has improved rapidly in recent years. For example, we used dot-
matrix printers in the past. Now, as laser printers become affordable and popular, in-house publishing
becomes a reality. The high demand for multimedia 1/0 such as image, speech, video, and music has resulted
in further advances in 1/O technology.

4.3.2 Inclusion, Coherence, and Locality

Information stored in a memory hierarchy (M;, M, ..., M,) satisfies three important properties: inclusion,
coherence, and locality as illustrated in Fig. 4.18. We consider cache memory the innermost level M,, which
directly communicates with the CPU registers. The outermost level M, contains all the information words
stored. In fact, the collection of all addressable words in M, forms the virtual address space of a computer.
Program and data locality is characterized below as the foundation for using a memory hierarchy effectively.
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Table 4.7 Memory Characteristics of a Typical Mainframe Computer in 1993

Memory level Level 0 Level | Leve 2 Level 3 Level 4
Characteristics CPU Cache Main Disk Tape
Registers Memory Storage Storage
Device ECL 256K -bit aM-bit 1-Gbyte 5-Gbyte
technology : SRAM DRAM " - magnetic magnetic
. . NI disk unit tape nit
Access time, ¢; | 10ns : 25-40 ns 60-100 ns 12-20 ms 2-20 min
o {search time)
Capacity, s, | 512bytes 128 Kbytes 512 Mbytes 60-228 512 Gbytes—
(in bytes) : Lo T Gbytes 2 Thytes
Cost, ¢; 18,000 - - 72 s6 . " 0.23 00t -
(incents’KB) | - - - s
Bandwidth, | 400-800 250-400 80133 3-5 0.18-0.23
b; (in MB/s) : o o
Unit of | 4-8bytes - 32 bytes © - 0.5-1 Kbytes 5-512Kbytes | Backup
transfer, x; - .per word per block perpage per file storage
Allocation Compiler Hardware Operating Operating Operating
management assignment control o osystem system/user system/user

Inclusion Property The inclusion property is stated as M c My C My C ... C M,,. The set inclusion
relationship implies that all information items are originally stored in the outermost level M,,. During the
processing, subsets of M, are copied into A, _,. Similarly, subsets of M, , are copied into M, _,, and so on.

In other words, if an information word is found in M,, then copies of the same word can also be found in
all upper levels M; 1, M; .o, ..., M,. However, a word stored in M, ,, may not be found in M, A word miss
in M; implies that it is also missing from all lower levels M; |, M, ..., M. The highest level is the backup
storage, where everything can be found.

Information transfer between the CPU and cache is in terms of words (4 or 8 bytes each depending on
the word length of a machine). The cache (M,) is divided into cache blocks, also called cache lines by some
authors. Each block may be typically 32 bytes (8 words). Blocks (such as “a” and “b” in Fig. 4.18) are the
units of data transfer between the cache and main memory, or between L and L, cache, etc.

The main memory (M) is divided into pages, say, 4 Kbytes each. Each page contains 128 blocks for the
example in Fig. 4.18. Pages are the units of information transferred between disk and main memory.

Scattered pages are organized as a segment in the disk memory, for example, segment F contains page A,
page B, and other pages. The size of a segment varies depending on the user’s needs. Data transfer between
the disk and backup storage is handled at the file level, such as segments F and G illustrated in Fig. 4.18.

Coherence Property The coherence property requires that copies of the same information item at
successive memory levels be consistent. If a word is modified in the cache, copies of that word must be updated
immediately or eventually at all higher levels. The hierarchy should be maintained as such. Frequently used
information is often found in the lower levels in order to minimize the effective access time of the memory
hierarchy. In general, there are two strategies for maintaining the coherence in a memory hierarchy.
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Fig.4.18. The inclusion property anddm tranyfers between adjacent ieve!sefammryhumm

The first method is called write-through (WT), which demands immediate update in M, if a word is
medified in M, fori=1,2, ..., n-1.

The second method is write-back (WB), which delays the update in M;,; until the word being modified in
M; is replaced or removed from M,. Memory replacement policies are studied in Section 4.4.3.

Locality of References The memory hierarchy was developed based on a program behavior known as
focality of references. Memory references are generated by the CPU for either instruction or data access.
These accesses tend to be clustered in certain regions in time, space, and ordering.

In other words, most programs act in favor of a certain portion of their address space during any time
window. Hennessy and Patterson (1990) have pointed out a 90-10 rule which states that a typical program
may spend 90% of its execution time on only 10% of the code such as the innermost loop of a nested looping
operation.
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There are three dimensions of the locality property: temporal, spatial, and sequential. During the lifetime
of a software process, a number of pages are used dynamically. The references to these pages vary from time
to time; however, they follow certain access patterns as illustrated in Fig. 4.19. These memory reference
patterns are caused by the following locality properties:

4 Virual
:gg‘r:iss Working set

] ]

Page number’ b
o (a)

—

L
: :' 7 (a)

— AL -— Time

Fig.4.19 Memory reference patterns in typical program trace experi_rhem_:s, where regions {a), (b), and (c} are

()

)

(3)

© generated with the execution of three sofoware processes -

Temporal locality—Recently referenced items (instructions or data) are likely to be referenced again
in the near future. This is often caused by special program constructs such as iterative loops, process
stacks, temporary variables, or subroutines. Once a loop is entered or a subroutine is called, a small
code segment will be referenced repeatedly many times. Thus temporal locality tends to cluster the
access in the recently used areas. i

Spatial locality— This refers to the tendency for a process to access items whose addresses are near
one another. For example, operations on tables or arrays involve accesses of a certain clustered area
in the address space. Program segments, such as routines and macros, tend 10 be stored in the same
neighborhood of the memory space.

Sequential locality—In typical programs, the execution of instructions follows a sequential order (or
the program order) unless branch instructions create out-of-order executions. The ratio of in-order
execution to out-of-order execution is roughly 5 to 1 in ordinary programs. Besides, the access of a
large data array also follows a sequential order.

Memory Design Implications The sequentiality in program behavior also contributes to the_ spatial
locality because sequentially coded instructions and array elements are often stored in adjacent locations.
Each type of locality affects the design of the memory hierarchy.
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The temporal locality leads to the popularity of the /east recently used (LRU) replacement algorithm, to be
defined in Section 4.4.3. The spatial locality assists us in determining the size of unit data transfers between
adjacent memory levels. The temporal locality also helps determine the size of memory at successive levels.

The sequential locality affects the determination of grain size for optimal scheduling (grain packing).
Prefetch techniques are heavily affected by the locality properties. The principle of localities guides the
design of cache, main memory, and even virtual memory organization.

The Working Sets Figure 4.19 shows the memory reference patterns of three running programs or three
software processes. As a function of time, the virtual address space {identified by page numbers) is clustered
into regions due to the locality of references. The subset of addresses {or pages) referenced within a given
time window (4, t + Af) is called the working set by Denning (1968).

During the execution of a program, the working set changes slowly and maintains a certain degree
of continuity as demonstrated in Fig. 4.19. This implies that the working set is often accumulated at the
innermost (lowest) level such as the cache in the memory hicrarchy. This will reduce the effective memory-
access time with a higher hit ratio at the lowest memory level. The time window A is a critical parameter set
by the OS kernel which affects the size of the working set and thus the desired cache size.

4.3.3 Memory Capacity Planning

The performance of a memory hierarchy is determined by the effective access time Ty to any level in the
hierarchy. It depends on the kit ratios and access frequencies at successive levels. We formally define these
terms below. Then we discuss the issue of how to optimize the capacity of a memory hierarchy subject to a
cost constraint.

Hit Ratios Hit ratio is a concept defined for any two adjacent levels of a memory hierarchy, When an
information item is found in M;, we call it a hit. otherwise, a miss. Consider memory levels M; and M,_, in a
hierarchy, i=1, 2,..., n. The hit ratio h; at M, is the probability that an information item will be found in M,
It is a function of the characteristics of the two adjacent levels M, and M, The miss ratio at M; is defined
as | — i,

The hit ratios at successive levels are a function of memory capacities, management policies, and program
behavior. Successive hit ratios are independent random variables with values between ¢ and 1. To simplify
the future derivation, we assume Ay = 0 and A, = 1, which means the CPU always accesses M, first and the
access to the outermost memory M, is always a hit.

The access frequency to M; is defined as £, = (1- A))(1— hy).. .(1- h,_))h;. This is indeed the probability of
successfully accessing M; when there are i — 1 misses at the lower levels and a hit at M. Note that Z’i; f=1

and f] = h;.

Due to the locality property, the access frequencies decrease very rapidly from low to high levels; that is,
Si> fa» fy > ... » f, This implies that the inner levels of memory are accessed more often than the outer
levels.

Effective Access Time In practice, we wish to achieve as high a hit ratio as possible at M. Every time a
miss occurs, a penalty must be paid to access the next higher level of memory. The misses have been called
block misses in the cache and page faults in the main memory because blocks and pages are the units of
transfer between these levels.
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The time penalty for a page fault is much longer than that for a block miss due to the fact that f; <, <ts.
Stone (1990) pointed out that a cache miss is 2 to 4 times as costly as a cache hit, but a page fault is 1000 to
10,000 times as costly as a page hit; but in modern systems a cache miss has a greater cost relative to a cache
hit, because main memory speeds have not increased as fast as processor speeds.

Using the access frequencies f; for i = 1, 2, ..., n, we can formally define the effective access time of a
memory hierarchy as follows:

nﬂf = zfi'ti
i=1
=it +(1=h)hty + (1 —h)(1 —k)fsts + ... +

(1AL =hp) . (1= Ry iy (4.3)

The first several terms in Eq. 4.3 dominate. Still, the effective access time depends on the program behavior
and memory design choices. Only after extensive program trace studies can one estimate the hit ratios and the
value of T,y more accurately.

Hierarchy Optimization The total cost of a memory hierarchy is estimated as follows:

Id

Com= 2,65 (4.4)

i=1

This implies that the cost is distributed over n levels. Since ¢| > ¢;> €3> ... &y, WE have to choose 51 < 5)
<§; < ... 5, The optimal design of a memory hierarchy should result in a T,z close to the f of M| and a total
cost close to the cost of M,,. In reality, this is difficult to achieve due to the tradeofts among 7 levels.

The optimization process can be formulated as a linear programming problem, given a ceiling Cy on the
total cost— that is, a problem to minimize

Ty= 9 fit B (4.5)
i=1

subject to the following constraints:

5>0,4>0 fori=12,.,n

Comt= 2,55 <C .6)
i=1
As shown in Table 4.7, the unit cost ¢; and capacity s; at each level M; depend on the speed ¢ required.
Therefore, the above optimization involves tradeoffs among ¢, c;, 5;, and f; or h; atall levels i = 1,2, ..., n.
The following illustrative example shows a typical such tradeotf design.

b
8] : Example 4.7 The design of a memory hierarchy

Consider the design of a three-level memory hierarchy with the following specifications for memory
characteristics:
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Memory level Access fime Capacity C‘oﬂt/K’bﬂe ’
Cache ' -t|=_253_.3_s' s, =512 Kbytes ‘q.=$0.12‘
Main memory I = unknown 52 =32 Mbytes b ep= 8002
Disk array L=4ms 5= unknown , £3 = $0.00002

The design goal is to achieve an effective memory-access time £ = 850 ns with a cache hit ratio 1, = 0.98
and a hit ratio /; = 0.99 in main memory. Also, the total cost of the memory hierarchy is upper-bounded by
$1,500. The memory hierarchy cost is calculated as

C=Cl Sl+62.5'2+C3S3S1,500 (4?)

The maximum capacity of the disk is thus obtained as §3 = 40 Gbytes without exceeding the budget.
Next, we want to choose the access time (#,) of the RAM to build the main memory. The effective memory-
access time is calculated as

t= hi f] + (1 - h])hzfz + (I —hl)(l - hz) h3f3 < 850 (48)

Substituting all known parameters, we have 850 x 107 = 0.98 x 25 x 10~ + 0.02 x 0.99 x 5H+0.02x0.01
X 1 x4 x 107, Thus #, = 1250 ns.

Suppose one wants to double the main memory to 64 Mbytes at the expense of reducing the disk capacity
under the same budget limit. This change will not affect the cache hit ratio. But it may increase the hit ratio
in the main memory, and thereby, the effective memory-access time will be reduced.

In this section, we introduce two models of virtual memory. We study address translation
mechanisms and page replacement policies for memory management. Physical memory such
as caches and main memory will be studied in Chapter 5. '

4.4.1 Virtual Memory Models

The main memory is considered the physical memory in which multiple running programs may reside.
However, the limited-size physical memory cannot load in all programs fully and simultaneously, The virtual
memaory concept was introduced to alleviate this problem. The idea is to expand the use of the physical
memory among many programs with the help of an auxiliary (backup) memory such as disk arrays.

Only active programs or portions of them become residents of the physical memery at one time. Active
portions of programs can be loaded in and out from disk to physical memory dynamically under the
coordination of the operating system. To the users, virtual memory provides almost unbounded memory
space to work with. Without virtual memory, it would have been impossible to develop the multiprogrammed
cr time-sharing computer systems that are in use today.

Address Spaces  Each word in the physical memory is identified by a unique physical address. All memory
words in the main memory form a physical address space. Virtual addresses are those used by machine
instructions making up an executable program.
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The virtual addresses must be translated into physical addresses at run time. A system of translation tables
and mapping functions are used in this process. The address translation and memory management policies
are affected by the virtual memory model used and by the organization of the disk and of the main memory.

The use of virtual memory facilitates sharing of the main memory by many software processes on a

. ;glcynamic basis. It also facilitates software portability and allows users to execute programs requiring much
more memory than the available physical memory.

Only the active portions of running programs are brought into the main memory. This permits the
relocation of code and data, makes it possible to implement protection in the 0S kernel, and allows high-
level optimization of memory allocation and management.

Address Mapping Let V' be the set of virtual addresses generated by a program running on a processor.
Let M be the set of physical addresses alocated to run this program. A virtual memory system demands an
automatic mechanism to implement the following mapping:

fi Vo Mol (4.9)

This mapping is a time function which varies from time to time because the physical memory is dynamically
allocated and deallocated. Consider any virtua! address v & ¥. The mapping /; is formally defined as follows:

m, if m e M has been allocated to store the
fn= data identified by virtual address v (4.10)

¢, if data v is missing in M

[n other words, the mapping f; () uniquely translates the virtual address v into a physical address m if there
is a memory hit in M. When there is a memory miss, the value returned, £, (v) = ¢, signals that the referenced
itemn (instruction or data) has not been brought into the main memory at the time of reference.

The efficiency of the address translation process affects the performance of the virtual memory. Virtual
memory is more difficult to implement in a multiprocessor, where additional problems such as coherence,
protection, and consistency become more challenging. Two virtual memory models are discussed below.

Private Virtual Memory The first model uses a privaie virtual memory space associated with each
processor, as was seen in the VAX/11 and in most UNIX systems (Fig. 4.20a). Each private virtual space is
divided into pages. Virtual pages from different virtual spaces are mapped into the same physical memory
shared by all processors.

The advantages of using private virtual memory include the use of a small processor address space (32
bits), protection on each page or on a per-process basis, and the use of private memory maps, which require
no locking,

The shortcoming lies in the synonym problem, in which different virtual addresses in different virtual
spaces point to the same physical page.

Shared Virtual Memory This model combines all the virtual address spaces into a single globally shared
virtual space (Fig. 4.20b). Each processor is given a portion of the shared virtual memery to declare their
addresses. Different processors may use disjoint Spaces. Some areas of virtual space can be also shared by
multiple processors.
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Examples of machines using shared virtual memory include the IBM801, RT, RP3, System 38, the HP Spectrum,
the Stanford Dash, MIT Alewife, Tera, etc. We will further study shared virtual mesnory in Chapter 9 Until then, alt
virtual memory systems discussed are assumed private unless otherwise specified.

Virtual space
Physical
Physical Memory Memory
" age P1
Virtual space fr(fmis) Virtual space space
of processor 1 of processor 2
Shared
shared Space
{pages) memory
P2
space
(a) Private virtual memory space in different processors (b) Globally shared virtual memory space

Fig. 4.20 Two virtual me sysvars {Courtesy of Dubols and Briggs, tutorial
-Annual Symibosh RO . -
The advantages in using shared virtual memory include the fact that all addresses are unique. However,
each processor must be allowed to generate addresses larger than 32 bits, such as 46 bits for a 64 Tbyte (2%
byte) address space. Synonyms are not allowed in a globally shared virtual memory.
The page table must allow shared accesses. Therefore, mutual exclusion (locking) ts needed to enforce
protected access. Segmentation is built on top of the paging system to confine each process to its own address
space (segments). Global virtual memory make may the address translation process longer.

4.4.2 TLB, Paging, and Segmentation

Both the virtual memory and physical memory are partitioned into fixed-length pages as illustrated in
Fig. 4.18. The purpose of memory allocation is to allocate pages of virtual memory to the page frames of the
physical memory.

Address Translation Mechanisms  The process demands the translation of virtual addresses into physical
addresses. Various schemes for virtual address translation are summarized in Fig. 4.21a. The translation
demands the use of fransiction maps which can be implemented in various ways.

Translation maps are stored in the cache, in associative memory, or in the main memory, To access these
maps, a mapping function is applied to the virtual address. This function generates a pointer to the desired
translation map. This mapping can be implemented with a hashing or congruence function.

Hashing is a simple computer technique for converting a long page number into a short one with fewer
bits. The hashing function should randomize the virtual page number and produce a unique hashed number
to be used as the pointer.
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Fig.4.21  Address translation mechanisms using aTLB and various forms of page tables

Translation Lookaside Buffer Translation maps appear in the form of a transiation lookaside buffer
(TLB) and page tables (PTs). Based on the principle of locality in memory references, a particular working
set of pages is referenced within a given context or time window.

The TLB is a high-speed lookup table which stores the most recently or likely referenced page entries.
A page entry consists of essentially a (virtual page number, page frame number) pair. It is hoped that pages
belonging to the same working set will be directly translated using the TLB entries.

The use of a TLB and PTs for address translation is shown in Fig 4.21b. Each virtual address is divided
into three fields: The leftmost field holds the virtual page number, the middle field identifies the cache block
number, and the rightmost field is the word address within the block.

Our purpose is to produce the physical address consisting of the page frame number, the block number,
and the word address. The first step of the translation is to use the virtual page number as a key to search
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through the TLB for a match. The TLB can be implemented with a special associative memory {content-
addressable memory) or use part of the cache memory.

In case of a malch (a Aif) in the TLB, the page frame number is retrieved from the matched page entry.
The cache block and word address are copied directly. In case the match cannot be found (a miss) in the
TLB, a hashed pointer is used to identify one of the page tables where the desired page frame number can
be retrieved.

Paged Memory Paging is a technique for partitioning both the physical memory and virtual memory into
fixed-size pages. Exchange of information between them is conducted at the page level as described before.
Page tables are used to map between pages and page frames. These tables are implemented in the main
memory upon creation of user processes. Since many user processes may be created dynamically, the number
of PTs maintained in the main memory can be very large. The page table entries (PTEs) are similar to the
TLB entries, containing essentially (virtual page, page frame) address pairs,

Note that both TLB entries and PTEs need to be dynamically updated to reflect the latest memory reference
history. Only “snapshots™ of the history are maintained in these translation maps.

If the demanded page cannot be found in the PT, a page fault is declared. A page fault implies that
the referenced page is not resident in the main memory. When a page fault occurs, the running process is
suspended. A context switch is made to another ready-to-run process while the missing page is transferred
from the disk or tape unit to the physical memory.

With advances in processor design and VLSI technology, very sophisticated memory management
schemes can be provided on the processor chip, and even full 64 bit address space can be provided. We shall
review some of these recent advances in Chapter 13.

Segmented Memory A large number of pages can be shared by segmenting the virtual address space
among multiple user programs simultaneously. A segment of scattered pages is formed logically in the virtual
memory space. Segments are defined by users in order to declare a portion of the virtual address space.

In a segmented memory system, user programs can be logically structured as segments. Segments can
invoke each other. Unlike pages, segments can have variable lengths. The management of a segmented
memory system is much more complex due to the nonuniform segment size.

Segments are a user-oriented concept, providing logical structures of programs and data in the virtual
address space. On the other hand, paging facilitates the management of physical memory. In a paged system,
all page addresses form a linear address space within the virtual space.

The segmented memory is arranged as a two-dimensional address space. Each virtual address in this space
has a prefix field called the segment number and a postfix field called the offset within the segment. The offser
addresses within each segment form one dimension of the contiguous addresses. The segment numbers, not
necessarily contiguous to each other, form the second dimension of the address space,

Paged Segments The above two concepts of paging and segmentation can be combined to implement a
type of virtual memory with paged segments. Within each segment, the addresses are divided into fixed-size
pages. Each virtual address is thus divided into three fields. The upper field is the segment number, the middle
one is the page number, and the lower one is the offset within each page.

Paged segments offer the advantages of both paged memory and segmented memory. For users, program
files can be better logically structured. For the OS, the virtual memory can be systematically managed with
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fixed-size pages within each segment. Tradeoffs do exist among the sizes of the segment field, the page field,
and the offset field. This sets limits on the number of segments that can be declared by users, the segment size
{the number of pages within each segment), and the page size.

Inverted Paging The direct paging described above works well with a small virtual address space such as
32 bits. Tn modern computers, the virtual address is large, such as 52 bits in the IBM RS/6000 or even 64 bits
in some processors. A large virtual address space demands either large PTs or multilevel direct paging which
will slow down the address translation process and thus lower the performance.

Besides direct mapping, address translation maps can also be implemented with inverted mapping (Fig.
4.21c). An inverted page table is created for each page frame that has been allocated to users. Any virtual
page number can be paired with a given physical page number.

Inverted page tables are accessed either by an associative search or by the use of a hashing function. The
IBM 801 prototype and subsequently the IBM RT/PC have implemented inverted mapping for page address
translation. In using an inverted PT, only virtual pages that are currently resident in physical memory are
included. This provides a significant reduction in the size of the page tables.

The generation of a long virtual address from a short physical address is done with the help of segment
registers, as demonstrated in Fig. 4.21¢. The leading 4 bits (denoted sreg) of a 32-bit address name a segment
register. The register provides a segment id that replaces the 4-bit sreg to form a long virtual address.

This effectively creates a single long virtual address space with segment boundaries at multiples of
256 Mbytes (2% bytes). The IBM RT/PC had a 12-bit segment id (4096 segments) and a 40-bit virtual address
space.

Either associative page tables or inverted page tables can be used to implement inverted mapping. The
inverted page table can also be assisted with the use of a TLB. An inverted PT avoids the use of a large page
table or a sequence of page tables.

Given a virtual address to be translated, the hardware searches the inverted PT for that address and, if it
is found, uses the table index of the matching entry as the address of the desired page frame. A hashing table
is used to search through the inverted PT. The size of an inverted PT is governed by the size of the physical
space, while that of traditional PTs is determined by the size of the virtual space. Because of limited physical
space, no multiple levels are needed for the inverted page table.

L)
& Example 4.8 Paging and segmentation in the Intel 486
processor

As with its predecessor in the x86 family, the i486 features both segmentation and paging capabilities.
Protected mode increases the linear address from 4 Gbytes (2°? bytes) to 64 Tbytes (2% bytes) with four
levels of protection. The maximal memory size in real mode is 1 Mbyte (2% bytes). Protected mode allows
the 1486 to run all software from existing 8086, 80286, and 80386 processors. A segment can have any length
from 1 byte to 4 Gbytes, the maximum physical memory size.

A segment can start at any base address, and storage overlapping between segments is allowed. The virtual
address (Fig. 4.22a) has a 16-bit segment selector to determine the base address of the linear address space
to be used with the i486 paging system.
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Fig. 4.22 Paging and segmentd
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tion mechanisms built into the Inte 486 CPU {Courtesy of Intel Corporation,
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The 32-bit offset specifies the internal address within a segment. The segment descriptor is used fo specify
access rights and segment size besides selection of the address of the first byte of the segment.

The paging feature is optional on the i486. It can be enabled or disabled by software control. When paging
is enabled, the virtual address is first translated into a linear address and then into the physical address.
When paging is disabled, the linear address and physical address are identical. When a 4-Gbyte segment is
selected, the entire physical memory becomes one large segment, which means the segmentation mechanism
is essentially disabled.

In this sense, the i486 can be used with four different memory organizations, pure paging, pure
segmentation, segmented paging, or pure physical addressing without paging and segmentation.

A 32-entry TLB (Fig 4.22b) is used to convert the linear address directly into the physical address without
resorting to the two-level paging scheme (Fig 4.22¢). The standard page size on the 1486 is 4 Kbytes =
2% bytes. Four control registers are used to select between regular paging and page fault handling.

The page table directory (4 Kbytes) allows 1024 page directory entries. Each page table at the second level
is 4 Kbytes and holds up 10 1024 PTEs. The upper 20 linear address bits are compared to determine if there is
a hit. The hit ratios of the TLB and of the page tables depend on program behavior and the efficiency of the
update (page replacement) policies. A 98% hit ratio has been observed in TLB operations.

Advanced memory management functions, to support virtual memory implementation, were first
introduced in Intel’s x86 processor family with the 80386 processor. Key features of the 80486 memory
management scheme described here were carried forward in the Pentium family of processors.

4.4.3 Memory Replacement Policies

Memory management policies include the allocation and deallocation of memory pages to active processes
and the replacement of memory pages. We will study allocation and deallocation problems in Section 5.3.3
after we discuss main memory organization in Section 5.3.1.

In this section, we study page replacement schemes which are implemented with demand paging memory
systems. Page replacement refers to the process in which a resident page in main memory is replaced by a
new page transferred from the disk.

Since the number of available page frames is much smaller than the number of pages, the frames will
eventually be fully occupied. In order to accommodate a new page, one of the resident pages must be replaced.
Different policies have been suggested for page replacement. These policies are specified and compared
below.

The goal of a page replacement policy is to minimize the number of possible page faults so that the
effective memory-access time can be reduced. The effectiveness of a replacement algorithm depends on the
program behavior and memory traffic patterns encountered. A good policy should match the program locality
property. The policy is also affected by page size and by the number of available frames.

Page Traces To analyze the performance of a paging memory system, page trace experiments are often
performed. A page trace is a sequence of page frame numbers (PFNs) generated during the execution of a
given program. To simplify the analysis, we ignore the cache effect.

Each PFN corresponds to the prefix portion of a physical memory address. By tracing the successive PFNs
in a page trace against the resident page numbers in the page frames, one can determine the occurrence of
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page hits or of page faults. Of course, when all the page frames are taken, a certain replacement policy must
be applied to swap the pages. A page trace experiment can be performed to determine the hit ratio of the
paging memory system. A similar idea can also be applied to perform block traces on cache behavior.
Consider a page trace P(n) = {1)n(2) ... Hn) consisting of n PFNs requested in discrete time from 1 to n,
where r{¢) is the PFN requested at time 7. We define two reference distances between the repeated occurrences
of the same page in P(n).
The forward distance f, (x) for page x is the number of time slots from time ¢ to the first repeated reference
of page x in the future:
k, if k is the smallest integer such that
filx)= r(t+E)=r(t)=xin P(n) C(411)
e, if x does not reappear in P (n) beyond time ¢
Similarly, we define a backward distance b,(x) as the number of time slots from time ¢ to the most recent
reference of page x in the past:
k, if k is the smallest integer such that
b(x)= rit—k)y=r{f)=xin P(n) (4.12)
o, if x never appeared in P(n) in the past
Let R(z) be the resident set of all pages residing in main memory at time £. Let g(r) be the page to be
replaced from R(r} when a page fault occurs at time 7.

Page Replacement Policies The following page replacement policies are specified in a demand paging
memory system for a page fault at time 1.

(1) Least recently used (LRU)—This policy replaces the page in R(#) which has the longest backward

distance:
a®=y, il b ()= MAX (b (0) (4.13)
(2) Optimal (OPT) algorithm--This policy replaces the page in R(z) with the longest forward distance:
4=y, iff f)= M (£ () (4.14)
(3) First-in-first-ous (FIFO)—This policy replaces the page in R(z) which has been in memory for the
longest time. 7
(4) Least frequently used (LFU)-—This policy replaces the page in R() which has been least referenced in
the past.

(5) Circular FIFO—This policy joins all the page frame entries into a circular FIFO queue using a pointer
to indicate the front of the queue. An allocation bit is associated with each page frame. This bit is set
upon initial allocation of a page to the frame.

When a page fault occurs, the queue is circularly scanned from the pointer position. The pointer skips
the allocated page frames and replaces the very first unallocated page frame. When all frames are
allocated, the front of the queue is replaced, as in the FIFO policy.

(6) Random replacement—This is a trivial algorithm which chooses any page for replacement randomly.
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L)
& Example 4.9 Page tracing experiments and interpretation
of results

Consider a paged virtual memory system with a two-level hierarchy: main memory M, and disk memory M,.
For clarity of illustration, assume a page size of four words. The number of page frames in M, is 3, labeled a,
b and ¢; and the number of pages in M; is 10, identified by 0, 1, 2, ..., 9. The ith page in M, consists of word
addresses dito4i+ 3 foralli=0,1,2,...,9.

A certain program generates the following sequence of word addresses which are grouped {(underlined}
together if they belong to the same page. The sequence of page numbers so formed is the page trace:

Word trace:

0,1,2,3, 4,56,7, 8 1617, 9,10,11, 12, 28,29,30, 89,10, 4,5, 12, 4,5
l 3 1! 4 { l 2 Iyl
Page trace: 0 | 2 4 2 3 7 2 1 3 1

Page tracing experiments are described below for three page replacement policies: LRU, OPT, and FIFO,
respectively. The successive pages loaded in the page frames (PFs) form the trace entries. Initially, all PFs
are empty.

PF 2 f o4 |2 3| 7 "0 [ 3] 1 |HitRatio
a 0 0 o | 4 .| 4 [ a4 7 ptrrl 7 pos| o3 TN
b L ] 1 3 3l o 3
LRU _ _ o =
g 2 2 2 [~ o2 [ 2 24 2 11
lets * * * L * * *® *
a 0 0 0 4 4 3 77 |7 3 |3
b 1 1 1 1 1|1 1 1 1 4
OPT |~ —
¢ 2 2 2 2. 2] 2 |2 2 42 1
Fauh * » * * ‘\ * *
a 0 0 0 {4 | 4 | .4 4} 2 |2 2 | 2
b 1 | 1 1 3 3 1 1 | 1 2
FIFO | . : =
e : 2 2 2 |2 7 1|7 3103 1
Faults * * * * * * . * * *

The above results indicate the superiority of the OPT policy over the others. However, the OPT cannot
be implemented in practice. The LRU policy performs better than the FIFO due to the locality of references.
From these results, we realize that the LRU is generally better than the FIFO. However, exceptions still exist
due to the dependence on program behavior.

Relative Performance The performance of a page replacement algorithm depends on the page trace
(program behavior) encountered. The best policy is the OPT algorithm. However, the OPT replacement is
not realizable because no one can predict the future page demand in a program.
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The LRU algorithm is a popular policy and often results in a high hit ratio. The FIFO and random policies
may perform badly because of violation of the program locality.

The circular FIFO policy attempts to approximate the LRU with a simple circular queue implementation.
The LFU policy may perform between the LRU and the FIFO policies. However, there is no fixed superiority
of any policy over the others because of the dependence on program behavior and run-time status of the page
frames.

In general, the page fault rate is a monotonic decreasing function of the size of the resident set R(7) at time
t because more resident pages result in a higher hit ratio in the main memory.

Block Replacement policies The relationship between the cache block frames and cache biocks is similar
to that between page frames and pages on a disk. Therefore, those page replacement policies can be modified
for block replacement when a cache miss occurs.

Different cache organizations (Section 5.1) may offer different fiexibilities in implementing some of the
block replacement algorithms. The cache memory is often associatively searched, while the main memory is
randomly addressed.

Due to the difference between page allocation in main memory and block allocation in the cache, the cache
hit ratio and memory page hit ratio are affected by the replacement policies differently. Cache traces are often
needed to evaluate the cache performance. These considerations will be further discussed in Chapter 5.

One way to deﬁne the demg‘lspaee ofprooessors is in‘terms ofthe processor c|ock rate and the average
cycles per instruction (CP’!) Bependmg on the intended &ppitcaﬁoﬂs, different procecsors—whlch rhay
even be of the same processor ﬁnﬂly—-—my ‘occupy dtﬁerent positions within this desngn space. The
 processor instruction set may be complex or reduced—and accordingly these two types of processors '
occupy different regions of the design space of clock rate versus CPL.

For higher performance; processor designs have e\rolved to supersnalar processors in one direction,and
vector processors. in the other. A superscalar processor-can schedule two or more machine instructions

~through the instruction pipeline in 1 single-clock cycle. Most sequential pragrams, when transiated into
machine language, do contain some: leve} of instruction level parallelism. Superscalar: processors aim to
exploit this parallelism chrough hardware techniques built into the processor. . ..

‘ Vector processors aim to explott a_gommon characteristic of most sc;ent.iﬂc and engineering
applicauons—-«processmg of large amounts of numeric data in the form of vectors or arrays. The earliest
supercomputers—CDC and Cm)-—emphasmed vector processing, whereas ‘modern  applications
requirements span a much’ broader range, and asa resuit the scope of computer mh}tacwne is also
broader today.

Very large tnstrm:mn word (VLﬁN) processors were: proposed on the premise that the compuler an
schedule muiuple iﬂdependent operations per cycle and pack them into long 1 machine instructions—
relieving the hardware from the task of discovering instruction level parallehﬁm “Syribolic processors
address the needs of artficial intelligénce, which may be contrasted with the’ number-crunching which
was the focus of earlier generations of supercomputers. : :
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‘Memory elements provided within the processor operate at processor speed, but they are srmall
in size, limited by cost and power consumption. Farther away from the processor, memory elements
commonly provided are (one or more levels of). cache - memory, main memory, and secondary storage.
The memory at each level s slower than the one at the previous level, but also much larger and less
‘expensive per bit The aim behind providing a memory hierarchy is'to achieve;as far as possible, the speed
of fast memory at the cost of the slower memory. The properties of inclusion, coherence and locality
‘make it possible to achieve this complex objective in a computer system. . . . :

Virtual memory systems aim to free program size from the size limitations of main ‘memory. Working
set, paging, segmentation, TLBs, and memory replacement policies make up the essential elements of a

virtual memory system, with locality of program references once again playing an important role.

o3

Exercises

Problem 4.1 Define the following basic terms
related to modern processor technology:

(a) Processor design space.

(b) Instruction issue latency.

(c) Instruction issue rate.

{d} Simple operation latency.

(e) Resource conflicts.

() General-purpose registers.

(g) Addressing modes.

(h} Unified versus split caches.

(i) Hardwired versus microcoded control.

Problem 4.2 Define the following basic terms
associated with memory hierarchy design:

(a) Virtual address space.

(b} Physical address space.

(c) Address mapping.

(d) Cache blocks.

(e) Multilevel page tables.

() Hit ratio.

(g) Page fault.

{h) Hashing function.

(i) Inverted page table.

(i) Memory replacement policies.

Problem 4.3 Answer the following questions
on designing scalar RISC or superscalar RISC
Drocessors:

(a) Why do most RISC integer units use
32 general-purpose registers! Explain the
concept of register windows implemented in
the SPARC architecture.

(b) What are the design tradeoffs between a
large register file and a large D-cache!

Why are reservation stations or reorder
buffers needed in a superscalar processor?

(c) Explain the relationship between the integer
unit and the floating-point unit in most
RISC processors with scalar or superscalar
organization.

Problem 4.4 Based on the discussion of advanced
processors in Section 4.1, answer the following
questions on RISC, CISC, superscalar, and VLIW
architectures.

(a) Compare the instruction-set architecture
in RISC and CISC processors in terms of
instruction formats, addressing modes, and
cycles per instruction (CFPi).

(b) Discuss the advantages and disadvantages in
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using a common cache or separate caches
for instructions and data. Explain the support
from data paths, MMU and TLB, and memory
bandwidth in the two cache architectures.

(c) Distinguish between scalar RISC and
superscalar RISC in terms of instruction
issue, pipeline architecture, and processor
performance.

(d) Explain the difference between superscalar
and VLIW architectures in terms of hardware
and software requirements.

Problem 4.5 Explain the structures and
operational requirements of the instruction
pipelines used in CISC, scalar RISC, superscalar
RISC, and VLIW processors. Comment on the cycles
per instruction expected from these processor
architectures.

Problem 4.6 Study the Intel i486 instruction set
and the CPU architecture, and answer the following
questions:

(a) What are the instruction formats and data
formats?

(b) What are the addressing modes?

{c) Whatare the instruction categories? Describe
one example instruction in each category.

{d) What are the HLL support instructions and
assembly directives?

(¢) What are the intenupt, testing, and debug
features?

(f Explain the difference between real and
virtual mode execution.

(g) Explain how to disable paging in the i486 and
what kind of application may benefit from this
option.

(h) Explain how to disable segmentation in the
1486 and what kind of application may use this
option.

(i) What kind of protection mechanisms are
buiit into the 4867

(i) Search for information on the Pentium and
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explain the impovements made, compared
with the i486.

Problem 4.7 Answer the following questions
after studying Example 4.4, the i860 instuction set,
and the architecture of the i860 and its successor
the i860XP:
(2) Repeat parts (a), (b), and (c) in Problem 4.6
for the i860/i860XP.
{b) What multiprocessor, support instructions
are added in the i860XP?
(c) Explain the dual-instrution mode and the dual-
operation instructions in i860 processors.
{d) Explain the address translation and paged
memory organization of the i860.

Problem 4.8 The SPARC arhitecture can be
implemented with two to eight register windows,
for a total of 40 to 132 GPRs in the integer unit.
Explain how the GPRs are organized into overlapping
windows in each of the following designs:
(a) Use 40 GPRs to construct two windows.
(b) Use 72 GPRs to construct four windows.
{c) In what sense is the SPARC considered a
scalable architecture?
(d) Explain how to use the overlapped windows
for parameter passing between the calling
procedure and the called procedure.

Problem 4.9  Study Section 4.2 and also the paper
by Jouppi and Wall (1989) and answer the following
questions:
(a) What causes a processor pipeline to be
underpipelined?
{(b) What are the factors limiting the degree of
superscalar design!

Problem 4.10 Answer the following questions
related to vector processing:
(a) What are the differences between scalar
instructions and vector instructions?
{b} Compare the pipelined execution style in a
vector processor with that in a base scalar
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processor (Fig. 4.15). Analyze the speedup
gain of the vector pipeline over the scalar
pipeline for long vectors.

(c) Suppose parallel issue is added to vector
pipeline execution.What would be the further
improvement in throughput, compared with
parallel issue in a superscalar pipeline of the
same degree!

Problem 4.11 Consider a two-level memory
hierarchy, M; and My. Denote the hit ratio of My, as
h. Let ¢ and ¢, be the costs per kilobyte, s and s
the memory capacities, and t, and t; the access times,
respectively.
(a) Under what conditions will the average cost
of the entire memory system approach ¢;!
{b) What is the effective memory-access time t,
of this hierarchy? '
(¢) Let r = tfty be the speed ratio of the two
memories. Let E = t/t, be the access efficiency
of the memory system. Express E in terms of
rand h.
(d) Plot E against h for r = 5, 20, and 100,
respectively, on grid paper.
(e) What is the required hit ratio h to make
E>095ir=100?

Problem 4.12 You are asked to perform capacity
planning for a two-level memory system. The first
level, M, is a cache with three capacity choices of
64 Kbytes, 128 Kbytes, and 256 Kbytes. The second

level, M,, is a main memory with a 4-Mbyte capacity.

Let ¢; and ¢, be the costs per byte and t; and t3
the access times for M; and M, respectively.Assume
¢1 = 20c; and t; = 10t,. The cache hit ratios for the
three capacities are assumed to be 0.7, 0.9,and 0.98,
respectively.
(a) What is the average access time t, in terms of
t = 20 ns in the three cache designs! (Note
that t; is the time from CPU to My and t; is
that from CPU to My, not from My to My).
(b) Express the average byte cost of the entire
memory hierarchy if c; = $0.2/Kbyte.
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(c) Compare the three memory designs and
indicate the order of merit in terms of average
costs and average access times, respectively.
Choose the optimal design based on the
product of average cost and average access
time.

Problem 4.13 Compare the advantages and
shortcomings in implementing private virtual
memories and a globally shared virtual memory
in a muiticomputer system. This comparative
study should consider the latency, coherence,
page migration, protection, implementation, and
application problems in the context of building a
scalable multicomputer system with distributed
shared memories.

Problem 4.14 Explain the inclusion property and
memory coherence requirements in a multilevel
memory hierarchy. Distinguish between write-through
and write-back policies in maintaining the coherence
in adjacent levels. Also explain the basic concepts of
paging and segmentation in managing the physical and
virtual memories in a hierarchy.

Problem 4.15 A two-level memory system has
eight virtual pages on a disk to be mapped into four
page frames (PFs) in the main memory. A certain
program generated the following page trace:
1,0,2,2.1,7,6,7.0,1,2,0,3,0,4,5,1,5,2,45,6,7.6,
7.2,4,2,7,3,3,2,3

(a) Show the successive virtual pages residing
in the four page frames with respect to the
above page trace using the LRU replacement
policy. Compute the hit ratio in the main
memory.Assume the PFs are initially empty.

{b) Repeat part (a) for the circular FIFO page
replacement policy. Compute the hit ratio in
the main memaory.

(<) Compare the hit ratio in parts (a} and (b) and
comment on the effectiveness of using the
circular FIFO policy to approximate the LRU
policy with respect to this particular page
trace.
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Problem 4.16

(a) Explain the temporal localicy, spatial locality,
and sequential locality associated with
program/data access in a memory hierarchy.

(b) Wvhat is the working set! Comment on the
sensitivity of the observation window size
to the size of the working set. How will this
affect the main memory hit ratio?

{c) Whatis the 90-10 rule and its relationship to
the locality of references!?

Problem 4.17 Consider a two-level memory

hierarchy, My and M,, with access times t; and ¢,

costs per byte ¢; and ¢, and capacities s and s,,

respectively. The cache hit ratio iy = 0.95 at the first

level. (Note that t; is the access time between the
CPU and M,, not between M, and My).

(a) Derive a formula showing the effective access
time tg of this memory system.

T

{b) Derive a formula showing the total cost of
this memory system.

(c) Suppose t; = 20 ns, t; is unknown, s; = 512
Kbytes, s, is unknown, ¢; = $0.01/byte, and ¢,
= $0.0005/byte. The total cost of thé cache
and main memory is upper-bounded by
$15,000.

(i) How large a capacity of M; (s, = ) can you
acquire without exceeding the budget limit?

(i) How fast a main memory (t; = ?) do you
need to achieve an effective access time of
tegr = 40 ns in the entire memory system
under the above hit ratio assumpi:ions?

Problem 4.18 Distinguish between numeric
processing and symbolic processing computers in
terms of data objects, common operations, memory
requirements, communication patterns, algorithmic
properties, /O requirements, and processor
architectures.




Bus, Cache, and Shared Memory

This chapter describes the design and operational principles of bus, cache, and shared-memory
organization, Backplane bus systems are studied, including features of VME, Futurebus+ and other bus
specifications. Cache addressing models and implementation schemes are described. We study memory
interleaving, allocation schemes, and the sequential and weak consistency models for shared-memory
systems, Other relaxed memory consistency models are given in Chapter 9.

BUSSYSTEMS =~ = =

The system bus of a computer system operates on a contention basis. Several active devices
such as processors may request use of the bus at the same time. However, only one of them
can be granted access at a time. The effective bandwidth available to each pracessor is inversely proportional
to the number of processors contending for the bus.

For this reason, most bus-based commercial multiprocessors have been small in size. The simplicity
and low cost of a bus system made it attractive in building small multiprocessors ranging from 4 to 16
processors. We shall see in Chapter 13 that advances in interconnect technologies have had a major impact
on multiprocessor architecture.

In this section, we specify system buses which are confined to a single computer system. We concentrate
on logical specification instead of physical implementation. Standard bus specifications should be both
technology-independent and architecture independent.

5.1.1 Backplane Bus Specification

A backplane bus interconnects processors, data storage, and peripheral devices in a tightly coupled hardware
configuration. The system bus must be designed to allow communication between devices on the bus without
disturbing the internal activities of all the devices attached 1o the bus. Timing protocols must be established
to arbitraie among multiple requests. Operational rules must be set to ensure orderly data transfers on the bus.

Signal lines on the backplane are often functionally grouped into several buses as depicted in Fig. 5.1. The
four groups shown here are very similar to those proposed in the 64-bit VME bus specification (VITA, 1990).

Various functional boards are plugged into slots on the backplane. Each slot is provided with one or more
connectors for inserting the boards as demonstrated by the vertical arrows in Fig. 5.1. For example, one or
two 96-pin connectors are used per slot on the VME backpiane.
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CPU Board Memory Board Bus Controller
Processor Memory System clock
and Cache Array driver, Daisy
I l s I I Chain driver,
Power driver,
Functional | ((Other Boards | ! Functional Bus timer,
Modules for CPU, Modules Arbiter
| | Memory
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Interface Interface Interface
Logic Logic Logic
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Data Transfer Bus (DTB)
(Data, Address, and Control Lines)
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Fig. 5.1 Backplane buses.system interfaces,and siot ¢onnections to various functionial boards in a multiprocessor
system _ .

Data Transfer Bus Data, address, and control lines form the data transfer bus (DTB) in a VME bus.
The addressing lines are used to broadcast the data and device address. The number of address lines is
proportional to the logarithm of the size of the address space. Address meodifier lines can be used to define
special addressing modes. The data lines are often proportional to the memory word length.

For example, the revised VME bus specification has 32 address lines and 32 (or 64) data lines. Besides
being used in addressing, the 32 address lines can be multiplexed to serve as the lower half of the 64-bit data
during data transfer cycles. The DTB control lines are used to indicate read/write, timing control, and bus
error conditions.

Bus Arbitration and Control The process of assigning control of the DTB to a requester is called
arbitration. Dedicated lines are reserved to coordinate the arbitration process among several requesters. The
requester is called a master, and the receiving end is called a s/ave.
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Interrupt lines are used to handle interrupts, which are often prioritized. Dedicated lines may be used
to synchronize parallel activities among the processor modules. Utility lines include signals that provide
periodic timing (clocking) and coordinate the power-up and power-down sequences of the system.

The backplane is made of signal lines, power lines, and connectors. A special bus controller board is often
used to house the backplane control logic, such as the system clock driver, arbiter, bus timer, and power
driver.

Functional Modules A functional module is a collection of electronic circuitry that resides on one
functional board (Fig. 5.1) and works to achieve special bus control functions. Special functional modules
are infroduced below:

An arbiter is a functional module that accepts bus requests from the requester module and grants control
of the DTB to one requester at a time.

A bus timer measures the time each data transfer takes on the DTB and terminates the DTB cycle if a
transfer takes too long.

An interrupter module generates an interrupt request and provides status /ID information when an
interrupt handler module requests it.

A location monitor is a functional module that monitors data transfers over the DTB. A power monitor
watches the status of the power source and signals when power becomes unstable.

A system clock driver is a module that provides a clock timing signal on the utility bus. In addition, board
interface logic is needed to match the signal line impedance, the propagation time, and termination values
between the backplane and the plug-in boards.

Physical Limitations Due to electrical, mechanical, and packaging limitations, only a limited number
of beards can be plugged into a single backplane. Multiple backplane buses can be mounted on the same
backplane chassis.

For example, the VME chassis can house one to three backplane buses. Two can be used as a shared
bus among all processors and memory boards, and the third as a local bus connecting a host processor to
additional memory and 1/0 boards. Means of extending a single-bus system to build larger multiprocessors
will be studied in Section 7.1.1. The bus system is difficult to scale, mainly limited by contention and
packaging constraints.

5.1.2 Addressing and Timing Protocols

There are two types of IC chips or printed-circuit boards connected to a bus: active and passive. Active
devices like processors can act as bus masters or as slaves at different times. Passive devices like memories
can act only as slaves.

The master can initiate a bus cycle, and the slaves respond to requests by a master. Only one master can
control the bus at a time. However, one or more slaves can respond to the master’s request at the same time.

Bus Addressing The backplane bus is driven by a digital clock with a fixed cycle time called the bus cycle.
The bus cycle is determined by the electrical, mechanical, and packaging characteristics of the backplane.

The backplane is designed to have a limited physical size which will not skew information with respect
to the associated strobe signals. To speed up the operations, cycles on parallel lines in different buses may
overlap in time, Factors affecting the bus delay include the source’s line drivers, the destination’s receivers,
slot capacitance, line length, and the bus loading effects (the number of boards attached).
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Not all the bus cycles are used for data transfers. To optimize performance, the bus should be designed
to minimize the time required for request handling, arbitration, addressing, and interrupts so that most bus
cycles are used for useful data transfer operations.

Each device can be identified with a device number. When the device number matches the contents of
high-order address lines, the device is selected as a slave. This addressing allows the allocation of a logical
device address under software control, which increases the application flexibility.

Broadcall and Broadcast Most bus transactions involve only one master and one slave. However, a
broadcall is a read operation involving multiple slaves placing their data on the bus lines. Special AND or
OR operations over these data are performed on the bus from the selected slaves.

Broadcall operations are used to detect multiple interrupt sources. A broadcast is a write operation
involving multiple slaves. This operation is essential in implementing multicache coherence on the bus.

Timing protocols are needed to synchronize master and slave operations. Figure 5.2 shows a typical timing
sequence when information is transferred over a bus from a source to a destination. Most bus timing protocols
implement such a sequence.

Master .ﬂ_).__, Slave’

1. Send request to bus.
2. Bus allocated.
3. Load address/data on bus.
4, Slave selected after signal
stabilized.

5. Signal data transfer.
6. Take stabilized data.

7. Acknowledge data taken.

8. Knowing data taken, remove
data and free the bus.

o Time

9. Knowing data removed, signal
transfer completed and free the
bus.

10. Send next bus request.

Y
Fig-5.2 Typical time sequence for information transfer between'a mastar and a slave over a system bus

Synchronous Timing  All bus transaction steps take place at fixed clock edges as shown in Fig, 5.3a. The
clock signals are broadcast to all potential masters and slaves.

Once the data becomes stabilized on the data lines, the master uses a data-ready pulse to initiate the
transfer. The slave uses a data-accept pulse to signal completion of the information transfer.
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A synchronous bus is simple to control, requires less control circuitry, and thus costs less. It is suitable
for connecting devices having relatively the same speed. Otherwise, the slowest device will slow down the
entire bus operation.

Asynchronous Timing Asynchronous timing is based on a handshaking or interlocking mechanism as
illustrated in Fig. 5.3b. No fixed clock cycle is needed. The rising edge (1) of the data-ready signal from the
master triggers the rising (2) of the data-accept signal from the slave, The second signal triggers the falling
(3) of the data-ready clock and the removal of data from the bus. The third signal triggers the trailing edge
(4) of the data-accept clock. This four-edge handshaking (interlocking) process is repeated until all the data
are transferred.

Data ./ . - . i
i databit >—< data bit )—7( data bit
Daia I'y 1 A I A
Ready

Data
Slave= Accept \ l

re—-— Cycle 1 > Cycle 2 -l Cycle 3

Master

(a) Synchronous bus timing with fixed-length clock signals for all devices
Data data bit {  qatabi data bit
Line vt n
Master

Data 3 1 3

Ready. ! _ l

Data

Slave~ Accept 2 4 2 4
l«—— Cycle 1———wfa—— Cycle 2——w«—— Cycle 3

(b) Asynchronous bus timing using a four-edge handshaking (interlocking
with variable length signals for different speed devices.

_Fig.5.3 Synchronous versus asynchronous bus timing protocols

The advantage of using an asynchronous bus lies in the freedom of using variable length clock signals for
different speed devices. This does not impose any response-time restrictions on the source and destination.
It allows fast and slow devices to be connected on the same bus, and it is less prone to noise. Overall, an
asynchronous bus offers better application flexibility at the expense of increased complexity and costs.

5.1.3 Arbitration, Transaction, and Interrupt

The process of selecting the next bus master is called arbitration. The duration of a master’s control of the
bus is called bus tenure. This arbitration process is designed to restrict tenure of the bus to one master at a
time. Competing requests must be arbitrated on a fairness or priority basis.

Arbitration competition and bus transactions may take place concurrently on a parallel bus with separate
lines for both purposes.



Bus, Cache, and Shared Memory . |57

Central Arbitration  As illustrated in Fig. 5.4a, a central arbitration scheme uses a central arbiter. Potential
masters are daisy-chained in a cascade. A special signal line is used to propagate a hus-grant signal level from
the first master (at slot 1) to the last master (at slot ).

Each potential master can send a bus request. However, all requests share the same bus-request line. As
Shown in Fig. 5. 4b, the bus-request signals the rise of the bus-grant level, which in turn raises the bus-busy
level.

Bus
Master 11— Master 2 | »| Master n
Grant
Central PErS A A
Bus B
Arbiter Y Y
Reguest

Bus Busy \l
~
Data Transfer Bus

{a) Daisy-chained bus arbitration

Bus
Request .\ / I
Bus K.

Grant

Bus Busy

(b) Bus transaction timing

Fig. 5.4 Central bus arbitration using shared requests and daisy-chained bus grants with a fixed priority

A fixed priority is set in a daisy chain from left to right. Only when the devices on the left do not request
bus control can a device be granted bus tenure. When the bus transaction is complete, the bus-busy level is
lowered, which triggers the falling of the bus gran signal and the subsequent rising of the bus-request signal.

The advantage of this arbitration scheme is its simplicity. Additional devices can be added anywhere in
the daisy chain by sharing the same set of arbitration lines. The disadvantage is a fixed-priority sequence
violating the fairness practice. Another drawback is its slowness in propagating the bus-grant signal along
the daisy chain.

Whenever a higher-priority device fails, all the lower-priotity devices on the right of the daisy chain
cannot use the bus. Bypassing a failing device or a removed device on the daisy chain is desirable. Some new
bus standards are specified with such a capability.

independent Requests and Grants Instead of using shared request and grant lines as in Fig. 5.4, multiple
bus-request and bus-grant signal lines can be independently provided for each potential master as in
Fig. 5.5a. No daisy-chaining is used in this scheme, and the total number of signal lines required is larger.

The arbitration among potential masters is still carried out by a central arbiter. However, any priority-
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based or fairess-based bus allocation policy can be implemented. A multiprocessor system usually uses a
priority-based policy for [/O transactions and a fairness-based policy among the processors.

In some asymmetric multiprocessor architectures, the processors may be assigned different functions,
such as serving as a front-end host, an executive processor, or 2 back-end slave processor. In such cases, a
priority policy can also be used among the processors.

The advantage of using independent requests and grants in bus arbitration is their flexibility and faster
arbitration time compared with the daisy-chained policy. The drawback is the large number of arbitration
lines used.

Distributed Arbitration The idea of using distributed arbiters is depicted in Fig. 5.5b. Each potential
master is equipped with its own arbiter and a unique arbitration number. The arbitration number is used 1o
resolve the arbitration competition. When two or more devices compete for the bus, the winner is the one
whose arbitration number is the largest.

Master 1| |Master2| +** |Master N

BRITF /N [MF {\ {\
BG,

BRn
BGy

Bus Busy \}
<F Data Transfer Bus J>

Legends: BR; {Bus request from master i) BG; (Bus grant to master i}
(a) Independent requests with a central arbiter

Central
Bus
Arbiter

Master 1 Master 2 e Master N

BG Al BG} ANL BG| |Al
il o -

Arhiter 1 Arbiter 2 soe Arbiter N

T = - L = = ry =
BB BB| sl T |

- A LA IAN ’

- Ly - L o
<r Data Transfer Bus >

Legends: BG (Bus grant) BB (Bus busy} AN {Arbitration number)
{b) Using diskributed arbiters

"Fig.5.5 o bus arbicration schemes using independent requests and distributed arbiters, respectively
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Parallel contention arbitration is used to determine which device has the highest arbitration number. All
potential masters can send their arbitration numbers to the shared-bus request/grant {SBRG) lines on the
arbitration bus via their respective arbiters.

Each arbiter compares the resulting number on the SBRG lines with its own arbitration number. If the
SBRG number is greater, the requester is dismissed. At the end, the winner’s arbitration number remains on
the arbitration bus. After the current bus transaction is completed, the winner seizes control of the bus.

Clearly, the distributed arbitration policy is priority-based. Multibus IT and Futurebus+ adopted such a
distributed arbitration scheme. Besides distributed arbiters, Futurebus+ standard also provided options for a
separate central arbiter.

Transaction Modes An address-only transfer consists of an address transfer followed by no data. A
compelled data transfer consists of an address transfer followed by a block of one or more data transfers to
one or more contiguous addresses. A packer data transfer consists of an address transfer followed by a fixed-
length block of data transfers (packef} from a set of contiguous addresses.

Data transfers and priority interrupts handling are two classes of operations regularly performed on a bus.
A bus transaction consists of a request followed by a response. A connected transaction is used to carry out
a master s request and a slave’s response in a single bus transaction. A split fransaction splits the request and
response into separate bus transactions. Three data transfer modes are specified below.

Split transactions allow devices with a long data latency or access time to use the bus resources in a
more efficient way. A complete split transaction may require two or more connected bus transactions. Split
transactions across multiple bus sequences are performed to achieve cache coherence ina large multiprocessor
system.

Interrupt Mechanisms  An interrupt is a request from I/0 or other devices to a processor for service or
atiention. A priority interrupt bus is used to pass the interrupt signals. The interrupter must provide status and
identification information. A functional module can be used to serve as an interrupt handler.

Priority interrupts are handled at many levels. For example, the VME bus uses seven interrupt-request
lines. Up to seven interrupt handlers can be used to handle multiple interrupts.

Interrupts can also be handled by message-passing using the data bus lines on a time-sharing basis. The
saving of dedicated interrupt lines is obtained at the expense of requiring some bus cycles for handling
message-based interrupts.

The use of time-shared data bus lines to implement interrupts is called virtual interrupt. Futurebus+ was
proposed without dedicated interrupt lines because virtual interrupts can be effectively implemented with the
data transfer bus.

5.1.4 IEEE Futurebus+ and Other Standards

By the carly 1990s, a large number of backplane bus standards were developed by various computer
manufacturers in cooperation with the relevant IEEE standards committees. Among the well-known ones
have been those for the VME bus (VITA and IEEE Standard 1014-1987), the Multibus II (Intel and IEEE
Standard 1296-1987), the Nubus (Texas Instruments, 1983), the Fastbus (Gustavason, 1986}, and the Nanobus
by Encore Computer Systems.
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Some of these buses have been used in building multiprocessors; however, each has had its own limitations.
Most of them support only a data path of 32 bits, and none of them support an efficient cache coherence
protocol or fast interprocessor synchronization.

The Futurebus+ standard was being developed under the cooperative effort of the VME International Trade
Association, Multibus Manufacturers Group, U.S. Navy Next Generation Computer Resources Program,
IEEE Microcomputer Standards Committee, and experts from companies and universities.

The objective was to develop a truly open bus standard that could support a 64-bit address space and the
throughput required by multi-RISC or future generations of multiprocessor architectures.

The standards must be expandable upward or scalable and be independent of particular architecture and
processor technologies. The key features of the IEEE Futurebus+ Standard 896.1-1991 are presented below,

Standard Requirements The major objectives of the Futurebus+ standards committee were to create a bus
standard that would provide a significant step forward in improving the facilities and performance available
to the designers of multiprocessor systems. The aim was to provide a stable platform on which several
generations of computer systems could be based. Summarized below are design requirements set by the IEEE
£96.1-1991 Standards Committee:

(1) Architecture-, processor-, and technology-independent open standard available to all designers.

(2) A fully asynchronous (compelled) timing protocol for data transfer with hand-shaking flow control.

(3} An optional source-synchronized (packet) protocol for high-speed block data transfers.

(4) Fully distributed parallel arbitration protocols to support a rich variety of bus transactions including
broadcast, broadcall, and three-party transactions.

(5) Support of high reliability and fault-tolerant applications with provisions for live card insertion/
removal, parity checks on all lines and feedback checking, and no daisy-chained signals to facilitate
dynamic system reconfiguration in the event of module failure. _

{6) Use of multilevel mechanisms for the locking of modules and avoidance of deadlock or livelock.

(7) Circuit-switched and split transaction protocols pius support for memory commands for implementing
remote lock and SIMD-like operations.

(8) Support of real-time mission-critical computations with multiple priority levels and consistent priority
treatment, plus support of a distributed clock synchronization protocol.

(9) Support of 32- or 64-bit addressing with dynamically sized data buses from 32 to 64, 128, and 256 bits
to satisfy different bandwidth demands.

(10) Direct support of snoopy cache-based multiprocessors with recursive protocols to support large
systems interconnected by multiple buses.

(11) Compatible message-passing protocols with multicomputer connections and special application
profiles and interface design guides provided.

Over the last three decades, clock speeds and device densities of processor chips have increased
exponentially. Parallel and cluster computing systems today employ a much larger number of processors than
the systems of two decades ago. The net result of these factors has been a huge increase in bandwidth demands
both within the computer system and in terms of communication with external devices and networks.
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The complex Futurebus+ architecture described above could not satisfy the rapidly increasing bandwidth
and efficiency demands of newer systems, and thereby the hasic performance limitations of bus-based
systems also became clear. The need was to support high performance distributed and cluster computing with
high bandwidth, low latency, and a scalable architecture to allow building large systems using inexpensive
building blocks. To meet these requirements, Scalable Coherent Interface (SCI) and InfiniBand came up as
simpler and more efficient offshoots of the Futurebus+ standard.

Low latency is important for efficient distributed computing, and therefore protocols must work with low
overheads. Every SCI and InfiniBand node comes with its own links, so that aggregate bandwidth increases
with the number of nodes, and thus the system remains scalable. Single link bandwidths are in GBytes/
sec, with switched interconnects, a variety of topologies and speeds is supported, and media-independent
protocols support a mix of copper and optical fiber links.

SCI was developed to support the requirements of both internal system bus (between processor, memory
and 1/O subsystem), and the external network. The aim behind this initiative was to avoid the bottlenecks of
physical buses, scale up to supercomputer performance, and support efficient parallel processing software.

With the use of point-to-point links and packet switching, SCI protocols were kept simple, so that interface
chips could run fast, allowing scalable and distance-independent protocols. Physical packaging is not
restricted to a bus backplane, and performance degrades only slowly as distance increases.

SCI provides distributed directory based cache coherence for a global shared memory model, and provides
a degree of fault tolerance. For high-performance computing, it is employed to build NUMA computer clusters
and other parallel architectures. Sun Microsystems has used SCI for all of their high-performance systems.

InfiniBand is another switched interconnect architecture which emerged from the Futurebus+ standard.
Serial point-to-point links are used, with simpler, less expensive, more reliable and scalable architecture.
Links can carry multiple channels of data at the same time in a packet-multiplexed manner, with throughputs
of up to 2.5 GBytes/sec.

Packet switching implies that control information determines the route a given packet or message follows
from source to destination. InfiniBand uses Internet Protocol Version 6 (IPv6), allowing a vast range of
system expansion. One or more packets are combined to form a message; a message can be a simple send or
receive operation, remote direct memory access operation, a transaction, or a multicast transmission.

Technology /Architecture Independence Any bus standard should aim to achieve technology
independence through basing the protocols on fundamental principles and optimizing them for maximum
communication efficiency rather than a particular generation or type of processor. Timing and handshake

. protocols should be governed by operational constraints rather than limitations of technology such as device
delays and capture windows.

The standard specification may be implemented with any logic family, provided that physical
implementation meets the signaling requirements.

Architecture independence should provide a flexible general-purpose solution to cache consistency within
which other cache protocols operate compatibly while at the same time providing an elegant unification
with the message-passing protocols used in a multicomputer environment. Such architecture independence
increases the application flexibility of a multiprocessor system built around the bus standard. Other bus
standards PCL, PCI Express and HyperTransport are described in brief in Chapter 13,
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This section deals with physical address caches, virtual address caches, cache implementation

using direct, fully associative, set-associative, and sector mapping. Finally, cache performance
issues are analyzed based on some reported trace results. Multicache coherence protocols will be studied in
Chapter 7.

5.2.1 Cache Addressing Models

Most raultiprocessor systems use private caches associated with different processors as depicted in Fig. 5.6.
Caches can be addressed using either a physical address or a virtual address. This leads to the two different
cache design models presented below.
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Physical Address Caches When a cache is accessed with a physical memory address, it is called a physical
address cache. Physical address cache models are illustrated in Fig. 5.7. In Fig. 5.7a, the model is based on
the experience of using a unified cache as in the VAX 8600 and the Intel i486.

In this case, the cache is indexed and tagged with the physical address. Cache lookup must occur after
address translation in the TLB or MMU.

A cache hit occurs when the addressed data/instruction is found in the cache. Otherwise, a cache miss
occurs. After a miss, the cache is loaded with the data from the memory. Since a whole cache block is loaded
at one time, unwanted data may also be loaded. Locality of references will find most of the loaded data useful
in subsequent instruction cycles. _

Data is written through the main memory immediately via a write-through (WT) cache, or delayed until block
replacement by using a write-back (WB) cache. A WT cache requires more bus or network cycles to access the main

- memory, while a WB cache allows the CPU to continue without waiting for the memory to cycle.
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Figure 5.7b demonstrates the split cache design using the MIPS R3000 CPU in the Silicon Graphics 4-D
Series workstation. Both data cache and instruction cache are accessed with a physical address issued from
the on-chip MMU. A two-level data cache is implemented in this design.

Example 5.1 Cache design in a Silicon Graphics workstation

A PA Captions:
»MMU > PA .
Cache| | Main VA = Virtual address
CPU Dorl |Memory| PA= Physical address
- torD 4 1 = Instructions
D = Data stream

(a) A unified cache accessed by physical address

E\b = PA 5 = PA
irs acon »
MMU leved D level D
"| B-Cache D-Cache [* i
VA D Main
PA Memory
_— -
CPU I -Cache 1

(b) Split caches accessed by physical address in the Silicon Graphics workstation
Fig. 5.7 Physical address modsls for unified and sphc caches
The first level uses 64 Kbytes of WT D-cache. The second level uses 256 Kbytes of WB D-cache. The

single-level I-cache is 64 Kbytes. By the inclusion property, the first-level cache is always a subset of the
second-level cache.

The major advantages of physical address caches include no need to perform cache flushing, no aliasing
problems, and thus fewer cache bugs in the OS kernels. The shortcoming is the slowdown in accessing the
cache until the MMU /TLB finishes translating the address. This motivates the use of a virtual address cache.
Integration of the MMU and caches on the same VLSI chip can alleviate some of these problems.

Most conventional system designs use a physical address cache because of its simplicity and because it
requires little intervention from the OS kernel. When physical address caches are used in a UNIX environment,
no flushing of data caches is needed if bus watching is provided to monitor the system bus for DMA requests
from 1/0 devices or from other CPUs. Otherwise, the cache must be flushed for every I/O without proper bus
watching.

Virtual Address Caches When a cache is indexed or tagged with a virtual address as shown in Fig. 5.8,'it
is called a virtual address cache. In this model, both cache and MMU translation or validation are done in
parallel. The physical address generated by the MML can be saved in tags for later write-back but is not used
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during the cache lookup operations. The virtual address cache is motivated with its enhanced efficiency to
access the cache faster, overlapping with the MMU translation as exemplified below.

P
& : Example 5.2 The virtual addressed split cache design in
Intel i860

Figure 5.8b shows the virtual address design in the Intel i860 using split caches for data and instructions.
[nstructions are 32 bits wide. Virtual addresses generated by the integer unit (IU) are 32 bits wide, and so are
the physical addresses generated by the MMU. The data cache is 8 Kbytes with a block size of 32 bytes. A
two-way set-associative cache organization (Sec. 5.2.3) is implemented with 128 sets in the D-cache and 64
sets in the [-cache.
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(a) A unified cache accessed by virtual address
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(b) A split cache accessed by virtual address as in the intel i860 processor

Fig.S,8  Virtial address models for unified and splie.caches (Courtesy of imtel Corporation, 1989)

The Allasing Problem The major problem associated with a virtual address cache is aliasing, when
different logically addressed data have the same index /tag in the cache. Multiple processes will in general
use the same range of virtual addresses. This aliasing problem may create confusion if two or more processes
access the same physical cache location. One way to solve the aliasing problem is to flush the entire cache
whenever a context switch occurs.

Large amounts of flushing may result in a poor cache performance, with a low hit ratio and too much time
wasted in flushing. When a virtual address cache is used with UNIX, flushing is needed after cach context
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switching. Before I/O writes or after /O reads, the cache must be flushed. Furthermore, aliasing between the
UNIX kemet and user programs and data is a serious problem. All of these problems introduce additional
systemn overhead.

Flushing the cache does not overcome the aliasing problem completely when using a shared memory with
mapped files and copy-on-write as in UNIX systems. These UNIX operations may not benefit from virtual
caches. In each entry/exit to or from the UNIX kernel, the cache must be flushed upon every system call and
nterrupt.

The virtual space must be divided between kernel and user modes by tagging kernel and user data
separately. This implies that a virtual address cache may lead to a lower performance unless most processes
are compute-bound.

With a frequently flushed cache, the debugging of programs is almost impossible to perform. Two
commonly used methods to get around the virtual address cache problems are to apply special tagging with a
process key or with a physical address. For example, the SUN 3/200 Series has used a virtual address, write-
back cache with the capability of being noncacheable. Three-bit keys are used in the cache to distinguish
among eight simultaneous contexts.

The flushing can be done at the page, segment, or context level. In this case, context switching does not
need to flush the cache but needs to change the current process key. Thus cached shared memory must be
shared on fixed-size boundaries. Other memory can be shared with noncacheability. Flushing and special
tagging may be traded for performance/cost reasons.

5.2.2 Direct Mapping and Associative Caches

The transfer of information from main memory to cache memory is conducted in units of cache blocks or
cache lines. Four block placement schemes are presented below. Each placement scheme has its own merits
and shortcomings. The ultimate performance depends on the cache-access patterns, cache organization, and
management policy used.

Blocks in caches are called block frames in order to distinguish them from the corresponding blocks in
main memory. Block frames are denoted as E‘, fori=0,1, 2, vy M Blocks are denoted as Biforj=0,1,
2, ..., n. Various mappings can be defined from sct {B;} to set {B;}. It is also assumed that n >> m, n=2°,
and m=2"

Each block (or block frame) is assumed to have b words, where » = 2", Thus the cache consists of m - b =
2" words. The main memory has n - b = 2°** words addressed by (s + w) bits. When the block frames are
divided into v = 2 sets, k = m/v = 2"~ ! blocks are in each set.

Direct-Mapping Cache This cache organization is based on a direct mapping of n/m = 2°~" memory
biocks, separated by equal distances, to one block frame in the cache. The placement is defined below using
a modulo-m function. Block B; is mapped to block frame B;:

B,—> B,  ifi=j(modulom) (5.1)

There is a unique block frame Ea that each B, can load into. There is no way to implement a block replacement
policy. This direct mapping is very rigid but is the simplest cache organization to implement. Direct mapping
is illustrated in Fig. 5.9a for the case where each block contains four words (w =2 bits),

The memory address is divided into three fields: The lower w bits specify the word offser within each
block. The upper s bits specify the block address in main memory, while the leftmost (s — #) bits specify the
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tag to be matched. The block field (r bits) is used to implement the (modulo-m) placement, where m = 2"
Once the block B, is uniquely identified by this field, the tag associated with the addressed block is compared

with the tag in the memory address.
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(b) Block B; can be mapped to block frame B;if i=j(modulo 4)
Fig.5.9 Direct-mapping cache organization and a mapping example

A cache hit occurs when the two tags match. Otherwise a cache miss occurs. In case of a cache hit, the
word offset is used to identify the desired data word within the addressed block. When a miss occurs, the
entire memory address (s + w bits) is used to access the main memory. The first s bits locate the addressed
block, and the lower w bits locate the word within the block.



Bus, Cache, and Shared Memory " 97
Example 5.3 Direct-mapping cache design and block

) ,

An example mapping is given in Fig. 5.9b, where n = 16 blocks are mapped to m = 4 block frames, with four
possible sources mapping into one destination using modulo-4 mapping.

Cache Design Parameters

In practice, the two parameters » and m differ by at least two to three orders of magnitude. A typical cache
block has 32 bytes corresponding to eight 32-bit words. Thus w = 3 bits if the machine is word-addressable.
If the machine is byte-addressable, then w = 5 bits.

Consider a cache with 64 Kbytes. This implies . = 2!! = 2048 block frames with r = 11 bits. Consider a
main memory with 32 Mbytes. Thus n = 2% blocks with s = 20 bits, and the memeory address needs s + w=
20 + 3 = 23 bits for word addressing and 25 bits for byte addressing. In this case, 2° "= 2% = 512 blocks are
possible candidates to be mapped into a single block frame in a direct-mapping cache.

Advantages of a direct-mapping cache include simplicity in hardware, no associative search needed, no
page replacement algorithm needed, and thus lower cost and higher speed.

However, the rigid mapping may result in a poorer hit ratio than with the associative mappings to be
introduced next. The scheme also prohibits parallel virtual address translation. The hit ratio may drop sharply
if many addressed blocks have to map into the same block frame. For this reason, direct-mapped caches tend
to use a larger cache size with more block frames to avoid the contention. ' :

Fully Associative Cache Unlike direct mapping, this cache organization offers the most flexibility in
mapping cache blocks. As illustrated in Fig. 5.10a, each block in main memory can be placed in any of the
available block frames, Because of this flexibility, an s-bit tag is needed in each cache block. As s > r , this
represents a significant increase tn tag length.

The name fully associative cache is derived from the fact that an m-way associative search requires the tag
to be compared with all block tags in the cache. This scheme offers the greatest flexibility in implementing
block replacement policies for a higher hit ratio.

The m-way comparison of all tags is very time-consuming if the tags are compared sequentially using
RAMs. Thus an associative memory (content-addressable memory, CAM) is needed to achieve a parallel
comparison with all tags simultaneously. This demands a higher implementation cost for the cache. Therefore,
a fully associative cache has been implemented only in moderate size.

Figure 5.10b shows a four-way mapping example using a fully associative search. The tag is 4 bits long
because 16 possible cache blocks can be destined for the same block frame. The major advantage of using
full associativity is to allow the implementation of a better block replacement policy with reduced block
contention. The major drawback lies in the expensive search process requiring 2 higher hardware cost.
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5.2.3 Set-Associative and Sector Caches

Set-associative caches are the most popular cache designs built into commercial computers. Sector mapping
caches offer a design alternative to set-associative caches. These two types of cache design are described
below.
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Set-Associative Cache This design offers a compromise between the two extreme cache designs based
on direct mapping and full associativity. If properly designed, this cache may offer the best performance-

cost ratio. Most high-performance computer systems are based on this approach. The idea is illustrated in
Fig. 5.11.

s+w’ Tag Cache Main Memory
memory |
emory 'address [ Bo B0
T: L s
[ Tag T set [ Word | B1 Set0 B1
3 B2
4 — B(k-1) B3
5-0 4 d w sd : .
> { B(ik) .
) N _ |
1= 1) Setié?___. BTy
1t U :
Bik+k-1 .
’_c_:"m"a’el (hit in cache) ke
L]
(miss in cache) /\/

(a) A k-way associative search within each set of k each blocks

Tag (2 bits) Cache BO
L
. 0] B
= & | =
B4
= & ] B5 | ain Momory
N m =
B8
B9
B10
B4
B12
B13
B14
B15

(b} Mapping cache blocks in a two-way associative cache wit four sets

Fig. 541, Secassoctative cashe organtzation and s two-way associtive mapping sxample.

In a k-way associative cache, the m cache block frames are divided into v = m/k sets, with £ blocks per set.
Each set is identified by a d-bit sef number, where 2% = v. The cache block tags are now reduced to s — d bits.
In practice, the set size k, or associativity, is chosen as 2, 4, 8, 16, or 64, depending on a tradeoff among block
size w, cache size m, and other performance/cost factors. ' '
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Fully associative mapping can be visualized as having a single set (1.e. ¥ = 1) or an m-way associativity.
In a k-way associative search, the fag needs to be compared only with the k tags within the identified set, as
shown in Fig. 5.11a. Since k is rather small in practice, the k-way associative search is much more economical
than the full associativity.

In general, a block B; can be mapped into any one of the available frames B , inasetS; defined below.
The matched tag identifies the current block which resides in the frame.

B> B,eS; if jimodulov)=i (5.2)

Design Tradeoffs The set size (associativity) & and the number of sets v are inversely related by
m=vXk (3.3

For a fixed cache size there exists a tradeoff between the set size and the number of sets.

The advantages of the set-associative cache include the following:

First, the block replacement algorithm needs to consider only a few blocks in the same set. Thus the
replacement policy can be more economically implemented with limited choices, as compared with the fully
associative cache.

Second, the k-way associative search is easier to implement, as mentioned earlier. Third, many design
tradeoffs can be considered (Eqg. 5.3) to yield a higher hit ratio.in the cache. The cache operation is often used
together with TLB.

L
& : Example5.4 Set-associative cache design and block mapping

An example is shown in Fig. 5.11b for the mapping of » = 16 blocks from main memory into a two-way
associative cache (k = 2) with v =4 sets over m = 8 block frames. For the i860 example in Fig. 5.8b, both
the D-cache and I-cache are two-way associative (k= 2). There are 128 sets in the D-cache and 64 sets in the
I-cache, with 256 and 128 block frames, respectively.

Sector Mapping Cache This block placement scheme is generalized from the above schemes. The idea
is to partition both the cache and main memory into fixed-size sectors. Then a fully associative search is -
applied. That is, each sector can be placed in any of the available sector frames.

The memory requests are destined for blocks, not for sectors. This can be filtered out by comparing the
sector tag in the memory address with all sector tags using a fully associative search. If a matched sector
frame is found (a cache hit), the block field is used to locate the desired block within the sector frame.

If a cache miss occurs, the missing block is fetched from the main memory and brought into a congruent
block frame in an available sector. That is, the ith block in a sector must be placed into the ith block frame
in a destined sector frame. A valid bit is attached to each block frame to indicate whether the block is vafid
or invalid.
~ When the contents of a block frame are replaced from a new sector, the remaining block frames in the
same sector are marked invalid. Only the block frames from the most recently referenced sector are marked
valid for reference. However, multiple valid bits can be used to record other block states. The sector mapping
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just described can be modified to yield other designs, depending on the block replacement policy being

implemented.

Compared with fully associative or set-associative caches, the sector mapping cache offers the advantages
of being flexible to implement various block replacement algorithms and being economical to perform a fully

associative search across a limited number of sector tags.

The sector partitioning offers more freedom in grouping cache lines at both ends of the mapping. Making
design choice between set-associative and sector mapping caches requires more trace and simulation evidence.

b)

Example 5.5 Sector mapping cache design

Figure 5.12 shows an example of sector mapping with a sector size of four blocks. Note that each sector can
be mapped to any of the sector frames with full associativity at the sector level.
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Fig.5.12 A four-way sector mapping cache organization
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This scheme was first implemented in the IBM System/360 Model 85. In the Model 85, there were
16 sectors, each having 16 blocks. Each block had 64 bytes, giving a total of 1024 bytes in each sector and a
total cache capacity of 16 Kbytes using a LRU block replacement policy.

5.2.4 Cache Performance Issues

The performance of a cache design concemns two related aspects: the cycle count and the kit ratio. The cycle
count refers to the number of basic machine cycles needed for cache access, update, and coherence control.
The hit ratio determines how effectively the cache can reduce the overall memory-access time. Tradeoffs do
exist between these two aspects. Key factors affecting cache speed and hit ratio are discussed below.

Program trace-driven simulation and analytical modeling are two complementary approaches to studying
cache performance. 1deally, both should be applied together in order to provide a credible performance
assessment.

Simulation studies present snapshots of program behavior and cache responses but they suffer from having
a microscopic perspective.

Analytical models may deviate from reality under simplification. However, they provide some macroscopic
and intuitive insight into the underlying processes.

Agreement between results generated from the two approaches allows one to draw a more credible
conclusion. However, the generalization of any conclusion is limited by the finite-sized address traces and by
the assumptions about address trace patterns. Simulation resulis can be used to verify the theoretical results,
and analytical formulation can guide simulation experiments on a wider range of parameters.

Cycle Counts The cache speed is affected by the underlying static or dynamic RAM technology, the cache
organization, and the cache hit ratios. The total cycle count should be predicated with appropriate cache hit
ratios. This affects various cache design decisions, as already seen in previous sections.

The cycle counts are not credible unless detailed simulation of all aspects of a memory hierarchy is
performed. The write-through or write-back policies also affect the cycle count, Cache size, block size, set
number, and associativity all affect the cycle count as illustrated in Fig. 5.13.

The cycle count is directly related to the hit ratio, which decreases aimost linearly with increasing values
of the above cache parameters. But the decreasing trend becomes flat and after a certain point turns into an
increasing trend (the dashed line in Fig. 5.13a). This is caused primarily by the effect of the block size on the
hit ratio, which will be discussed below.

Hit Ratios The cache hit ratio is affected by the cache size and by the block size in different ways. These
effects are illustrated in Figs. 5.13b and 5.13c, respectively. Generally, the hit ratio increases with respect to
increasing cache size (Fig. 5.13b).

When the cache size approaches infinity, a 100% hit ratio should be expected. However, this will never
happen because the cache size is always bounded by a limited budget. The initial cache loading and changes
in locality also prevent such an ideal performance. The curves in Fig. 5.13b can be approximated by 1 - C 05
where C is the total cache size.

Effect of Block Size With a fixed cache size, cache performance is rather sensitive to block size.
Figure 5.13c illustrates the rise and fall of the hit ratio as the cache block varies from small to large. Initially,
we assume a block size (such as 32 bytes per block). This block size is determined mainly by the temporal
locality in typical programs.



Bus, Cache, and Shared Memory .. 203
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Fig.5.13  Cache performarice versus design parameters used

As the block size increases, the hit ratio improves because of spatial locality in referencing larger
instruction/data blocks. The increase reaches its peak at a certain optimum block size. After this point, the hit
ratio decreases with increasing block size. This is caused by the mismatch between program behavior and
block size.

As a matter of fact, as the block size becomes very large, many words fetched into the cache may never
be used. Also, the temporal locality effects are gradually lost with larger block size. Finally, the hit ratio
approaches zero when the block size equals the entire cache size,

For a bus-based system, Smith (1987) determined that the optimum block size should be chosen to
minimize the effective memory-access time. This optimum size depends on the ratio of the access latency
and the bus cycle time (data transfer rate). He identified design targets for the hit ratio, bus traffic, and average
delay per reference based on an empirical model derived from a wide variety of benchmark simulations,

Effects of Set Number In a set-associative cache, the effects of set number are obvious. For a fixed cache
capacity, the hit ratio may decrease as the number of sets increases. As the set number increases from 32 to
64, 128, and 256, the decrease in the hit ratio is rather small based on Smith’s 1982 report. When the set
number increases to 512 and beyond, the hit ratio decreases faster. Also, the tradeoffs between block size and
set number should not be ignored (Eq. 5.3).
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Other Performance Factors Ina performance-directed design, tradeoffs exist among the cache size, set
number, block size, and memory speed. Independent blocks, fetch sizes, and fetch strategies also affect the
performance in various ways.

Multilevel cache hierarchies offer options for expanding the cache effects. Very often, a write-through
policy is used in the first-level cache, and a write-back policy in the second-level cache. As in the memory
hierarchy, an optimal cache hierarchy design must match special program behavior in the target application
domain.

The distribution of cache references for instruction, loads, and writes of data will affect the hierarchy
design. Based on some previous program traces, 63% instruction fetches, 25% loads, and 12% writes were
reported. This affects the decision to split the instruction cache from the data cache.

Note 5.1 Multi-Jlevel cache memories

Over the last two decades, processor speeds have risen much faster than memory speeds. In fact, in
terms of number of processor cycles—i.e. relative to processor clock speeds—main memory is much
slower today than it was twenty or thirty years ago, albeit it is also much less expensive and storage
densities are much greater.

\_“'ﬂ'_’__—l

Processor Three levels of cache Main memory

Fig.5.14 Three levels of cache between processor and main memory

To “bridge the divide” between processor speeds and main memory speeds—a divide which has
grown over the years—multiple levels of cache memories are employed between processor(s) and
main memory, as shown schematically in Fig. 5.14.

To avoid pipeline stalls, level one cache L1, closest to the processor, is divided between instruction
and data cache (I-cache and D-cache). It is the fastest and smallest of the three caches, and uses faster
SRAM; ideally, its access time should equal one processor clock cycle. On multi-core chips, separate
L1 cache is provided with each processor core.

1.2 cache may also be on the same chip but, on multi-core chips, typically it is shared between
processor cores; size goes up to a few megabytes, using slower and less expensive dynamic RAM. L3
cache, if provided, may be on-chip, off-chip or may even be integrated with the main memory.

In a system with multilevel cache, to find a required byte or word in memory, the processor can
initiate the access in parallel across two (or more}) levels of cache; when a cache hit occurs at a particular
level, access in the lower levels can be terminated.
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Over the last two decades, there have been huge advances in VLSI technology in terms of both device
densities on a chip and clock speeds. Over this same period, due to lower system costs, the total number
of processors manufactured and sold around the world has also risen steadily. As a result, many different
processors are produced in each processor family; as examples, we need only to cite Intel Pentium, Sun
SPARC, MIPS, and the Power series of processors. More than one manufacturer usually produces processors
in each of these families.

Different members of each processor family are targeted at different applications (recall Fig. 4.1), and
are built to different cost versus performance criteria. To bridge today’s larger processor-memory speed gap,
multilevel cache systems are employed. Specific cache systems are designed based on specific processor
specifications. For each level of the cache, processor designers must select the cache size, cache block size,
mapping scheme (direct or set associative), write back/write through policy, etc.

As mentioned above, simulation studies and analytical models can be used for such designs, Also important
in this context are past experience with earlier processor models, chip area requirements for the cache, power
consumption, and often the intuitive decisions made by processor designers.

Memory interleaving provides a higher bandwidth for pipelined access of contiguous memory
locations. Methods for allocating and deallocating main memory to multiple user programs
are considered for optimizing memory utilization. Memory bandwidth analysis and fault tolerance issues are
also discussed below.

5.3.1 Interleaved Memory Organization

Various organizations of the physical memory are studied in this section. In order to close up the speed gap
between the CPU/cache and main memory built with RAM modules, an interleaving technique is presented
below which allows pipelined access of the parallel memory modules.

The memory design goal is to broaden the effective memory bandwidth so that more memory words can
be accessed per unit time. The ultimate purpose is to match the memory bandwidth with the bus bandwidth
and with the processor bandwidth.

Memory Interfeaving The main memory is built with multiple modules. These memory modules are
connected to a system bus or a switching network to which other resources such as processors or I/0 devices
are also connected.

Once presented with a memory address, each memory module returns with one word per cycle. It is
possible to present different addresses to different memory modules so that paralle] access of multiple words
can be done simultaneously or in a pipelined fashion. Both parallel access and pipelined access are forms of
parallelism practiced in a parallel memory organization.

Consider a main memory formed with m = 2 memory modules, each containing w = 2° words of memory
cells. The total memory capacity is m - w = 2°** words. These memory words are assigned linear addresses.
Different ways of assigning linear addresses result in different memory organizations.

Besides random access, the main memory is ofien block-accessed at consecutive addresses. Block access
is needed for fetching a sequence of instructions or for accessing a linearly ordered data structure. Each block
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access may correspond to the size of a cache block (cache line) or to that of several cache blocks. Therefore,
it is desirable to design the memory to facilitate block access of contiguous words.

Figure 5.15a shows two address formats for memory interleaving. Low-order interleaving spreads
contiguous memory locations across the m modules horizontally (Fig. 5.15a). This implies that the low-order
a bits of the memory address are used to identify the memory module. The high-order b bits are the word
addresses (displacement) within each module. Note that the same word address is applied to all memory
modules simultaneously. A module address decoder is used to distribute module addresses.

High-order interleaving (Fig. 5.15b) uses the high-order a bits as the module address and the low-order
b bits as the word address within each module. Contiguous memory locations are thus assigned to the same
memory module. In each memory cycle, only one word is accessed from each module. Thus the high-order
interleaving cannot support block access of contiguous locations.
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(a) Low-order m-way interleaving (the C-access memory scheme)
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Fig.5.45 Two interleaved memory organizations with m = 2° modules and-w. = 2% words per. module (word
addresses shown in boxes) : oo e

On the other hand, the low-order m-way interleaving does support block access in a pipelined fashion.
Unless otherwise specified, we consider only low-order memory interleaving in subsequent discussions.
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Pipelined Memory Access Access of the m memory modules can be overlapped in a pipelined fashion.
For this purpose, the memory cycle (called the major cycle) is subdivided into m minor cycles.

Memory address Register (6 bits)

Word address ﬂ——-——"k-—ﬁ—/ Module address
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{(a) Eight-way low-order interleaving {absolute address shown in each memory word)
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wol |

-1—.8 —:le —’{ T |‘- > Time

(b) Pipelined access of eight consecutive words in a C-access memaory

Fig-5.16 Multiway interieaved memory organization and the C-access timing chart

An eight-way interleaved memory (with m = 8 and w = 8 and thus @ = » = 3) is shown in Fig. 5.16a. Let 6
be the major cycle and t the minor cycle. These two cycle times are related as follows:

;=8 (5.4)

m
where m is the degree of interleaving. The timing of the pipelined access of the eight contiguous memory
words is shown in Fig. 5.16b. This type of concurrent access of contiguous words has been called a C-access
memory scheme. The major cycle € is the total time required to complete the access of a single word from
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a module, The minor cycle 7is the actual time needed to produce one word, assurning overlapped access of
successive memory modules separated in every minor cycle T.

Note that the pipelined access of the block of eight contiguous words is sandwiched between other
pipelined block accesses before and after the present block. Even though the total block access time is 26,
the effective access time of each word is reduced to T as the memory is contiguously accessed in a pipelined
fashion.

5.3.2 Bandwidth and Fault Tolerance

Hellerman (1967) has derived an equation to estimate the effective increase in memory bandwidth through
multiway interleaving. A single memory module is assumed to deliver one word per memory cycle and thus
has a bandwidth of 1.

Memory Bandwidth The memory bandwidth B of an m-way interleaved memory is upper-bounded by m
and lower-bounded by 1. The Hellerman estimate of B is

B=m"*x~ [m (5.5)

where m is the number of interleaved memory modules. This equation implies that if 16 memory modules are
used, then the effective memory bandwidth is approximately four times that of a single module.

This pessimistic estimate is due to the fact that block access of various lengths and access of single
words are randomly mixed in user programs. Hellerman’s estimate was based on a single-processor system.
if memory-access conflicts from multiple processors (such as the hot spot problem) are considered, the
effective memory bandwidth will be further reduced.

In a vector processing computer, the access time of a long vector with » elements and stride distance 1
has been estimated by Cragon (1992) as follows: It is assumed that the » elements are stored in contiguous
memory locations in an m-way interleaved memory system. The average time [, required to access one
element in a vector is estimated by

r1=—9—(1+’""1) (5.6)

m n

When n — oo (very long vector), t; — 6/m = t as derived in Eq. 5.4. As n — | (scalar access), 1/} — 6.
Equation 5.6 conveys the message that interleaved memory appeals to pipelined access of long vectors; the
longer the better.

Fault Tolerance High- and low-order interleaving can be combined to yield many different interleaved
memory organizations, Sequential addresses are assigned in the high-order interleaved memory in each
memory module.

This makes it easier to isolate faulty memory modules in a memory bank of m memory modules. When
one module failure is detected, the remaining modules can still be used by opening a window in the address
space. This fault isolation cannot be carried out in a low-order interleaved memory, in which a module failure
may paralyze the entire memory bank. Thus low-order interleaving memory is not fault-tolerant.
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In Fig. 5.17, two alternative memory addressing schemes are shown which combine the high- and low-order
interleaving concepts. These alternatives offer a better bandwidth in case of module failure. A four-way low-
order interleaving is organized in each of two memory banks in Fig. 5.17a.

Example 5.6 Memory banks, fault tolerance,and bandwidth
tradeoffs
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Fig.5.17 Bandwidth analysis of two alternative interleaved memory organizations over eight memory modules
(Absolute address shown in each memory bank.}
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On the other hand, two-way low-order interleaving is depicted in Fig. 5.17b with the memory system
divided into four memory banks. The high-order bits arc used to identify the memory banks. The low-order
bits are used to address the modules for memory interleaving.

In case of single module failure, the maximum memory bandwidth of the eightway interleaved memory
(Fig. 5.16a) is reduced to zero because the entire memory bank must be abandoned. For the four-way two-
bank design (Fig. 5.17a), the maximum bandwidth is reduced to four words per memory cycle because only
one of the two faulty banks is abandoned.

In the two-way design in Fig. 5.17b, the gracefully degraded memory system may still have three working
memory banks; thus a maximum bandwidth of six words is expected. The higher the degree of interleaving,
the higher the potential memory bandwidth if the system is fault-free.

If fault tolerance is an issue which cannot be ignored, then tradeoffs do exist between the degree of
interleaving and the number of memory banks used. Each memory bank is essentially self-enclosed, is
independent of the conditions of other banks, and thus offers better fault isolation in case of failure.

5.3.3 Memory Allocation Schemes

The idea of virtual memory is to allow many software processes time-shared use of the main memory, which
is a precious resource with limited capacity. The portion of the OS kernel which handles the allocation and
deallocation of main memory to executing processes is called the memory manager. The memory manager
monitors the amount of available main memory and decides which processes should reside in main memory
and which should be put back to disk if the main memory reaches its limit.

In this section, we study the basic concepts of memory swapping, either at the process level or at the
individual page level. Both swapping systems and demand paging systems are introduced, based on the
development of the memory management subsystem in UNIX. Possible extensions of these memory
allocation schemes are discussed along with some performance issues.

Allocation Policies Memory swapping is the process of moving blocks of information between the levels
of a memory hierarchy. For simplicity, we concentrate on swapping between the main memory and the disk
memory. Several key concepts or design alternatives in implementing memory swapping are introduced
below.

First, the swapping policy can be made either nonpreemptive or preemptive. In nonpreemptive allocation,
the incoming block can be placed only in a free region of the main memory. A preemptive allocation scheme
allows the placement of an incoming block in a region presently occupied by another process. In either case,
the memory manager should try to allocate the free space first.

When the main memory space is fully allocated, the nonpreemptive scheme swaps out some of the
allocated processes (or pages) to vacate space for the incoming block. On the other hand, a preemptive
scheme has the freedom to preempt an executing process. The nonpreemptive scheme is casier to implement,
but it may not yield the best memory utilization.

The preemptive scheme offers more flexibility, but it requires mechanisms be established to determine
which pages or processes are to be swapped out and to avoid thrashing caused by an excessive amount of
swapping between memory levels. This implies that preemptive allocation schemes arc more complex and
more expensive to implement.
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In addition, an allocation policy can be made either local or global. A Jocal allocation policy involves only
the resident working set of the faulty process. A global allocation policy considers the history of the working
sets of all resident processes in making a swapping decision. Most computers use the local policy.

Swapping Systems This refers to memory systems which allow swapping to occur only at the entire
process level. A swap device is a configurable section of a disk which is set aside for temporary storage of
information being swapped out of the main memory. The portion of the disk memory space set aside for a
swap device is called the swap space, as depicted in Fig. 5.18.
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{b) Swapping in a process (or pages) to the memory

Fig.5.18 The conceptof methory swappmg in 2 virtual memory hverarchy (virtual page addmm are identified
by numbers within parent!fesa,assuming a page size of 1 K words)

The memory manager allocates disk space for program files one block at a time, but it allocates space
on the swap device in groups of contiguous blocks. For simplicity, we consider blocks as fixed-size pages.
The virtual address space of a process may occupy a number of pages. The size of a process address space is
limited by the amount of physical memory available on a swapping system.
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The swapping system was used in the PDP-11 and in early UNIX systems. It transfers the entire process
between main memory and the swap device. It does not transfer parts (pages) of a process scparately. For
example, the PDP-11 allowed a maximum process size of only 64 Kbytes. The entire process must reside in
main memory to gxecute.

A simple example is shown in Fig. 5.18 to illustrate the concepts of swapping out and swapping in a
process consisting of five resident pages identified by virtual page addresses 0, 1K, 16K, 17K, and 63K with
an assumed page size of IK words (or 4 Kbytes for a 32-bit word length).

Figure 5.18a shows the allocation of physical memory before the swapping. The main memory is assumed
to have 1024 page frames, and the disk can accommodate 4M pages. The five resident pages, scattered around
the main memory, are swapped out to the swap device in contiguous pages as shown by the shaded boxes.

Later on, the entire process may be required to swap back into the main memory, as depicted in Fig. 5.18b.
Different page frames may be allocated to accommodate the returning pages. The reason why contiguous
blocks are mapped in the swap device is (o enable faster [/0 in one multiblock data transfer rather than in
several single-block transtfer operations.

It should be noted that only the assigned pages are swapped out and in, not the entire process address
space. In the example process, the entire process address space is assumed to be 64K. The unassigned pages
include the two gaps of virtual addresses between 2K and 16K and between 18K and 63K, respectively.

These empty spaces are not involved in the swapping process. When the memory manager swaps the
process back into memory, the virtual address map should be able to identify the virtual addresses required
for the returning process.

Swapping in UNIX In the early UNIX/OS, the kernel swaps out a process to create free memory space
under the following system cails:

(1) The atlocation of space for a child process being created.

(2) The increase in the size of a process address space.

(3) The increased space demand by the stack for a process.

(4) The demand for space by a returning process swapped out previously.

A special process 0 is reserved as a swapper. The swapper must swap the process into main memory before
the kernel can schedule it for execution. In fact, process 0 is the only process which can do so. Only when
there are processes to swap in and eligible processes to swap out can the swapper do its work. Otherwise, the
swapper goes to sleep.

However, the kernel periodically wakes the swapper up when the situation demands. The swapper should
be designed to avoid thrashing, especially in swapping out a process which has not been executed yet.

Demand Paging Systems A paged memory system often uses a demand paging memory allocation policy.
This policy allows only pages (instead of processes) to be transferred between the main memory and the swap
device. In Fig. 5.18, individual pages of a process are allowed to be independently swapped out and in, and
we have a demand paging system.

The UNIX BSD 4.0 release was the first implementation of the demand paging policy. UNIX System V

also supported demand paging. In a demand paging system, the entire process does not have to move into
main memory to execute. The pages are brought into main memory only upon demand.
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This allows the process address space to be larger than the physical address space. The major advantage
of demand paging is that it offers the flexibility to dynamically accommodate a large number of processes in
the physical memory on a time-sharing or multiprogrammed basis with significantly enlarged address spaces.

The idea of demand paging matches nicely with the working-set concept. dnly the working sets of active
processes are resident in memory. Back (1986) has defined the working set of a process as the set of pages
referenced by the process during the last 7 memory references, where # is the window size of the working set.

)

In the following page trace, the successive contents of the working set of a process are shown for a window
of size n=3:

Example 5.7 Working sets generated with a page trace

Page trace 7 24 7 15 24 24 8 ] 1 8 9 24 8 |
Working set 7 7 7 7 7 7 8 8 g ] 8 8 8 8
24 | 24 24 |24 24 24 24 24 24 9 9 9
15 15 15 15 1 I ] 1 24 24 1 24

If the kernel keeps only the working sets with a sufficiently large window in the main memory, many
more active processes can concurrently reside in the memory than the swapping systern can provide. This
potentially increases the system throughput and reduces the swapping traffic. In other words, undemanded
pages are not involved in the swapping process.

Hybrid Memory Systems The VAX/VMS and UNIX System V had implemented hybrid memory systems
combining the advantages of both swapping and demand paging. When several processes simultaneously
are in the ready-to-run-but-swapped state, the swapper may choose to swap out several processes entirely to
vacate the needed space. This scheme may lower the page fault rate and reduce thrashing,

Other virtual memory systems may use anticipatory paging, which prefetches pages based on anticipation.
This scheme is rather difficult to implement. Unless memory reference patterns can be predicted at the time
when the compiler generates the addresses, this scheme cannot demonstrate its power. A short-range memory
reference pattern is a lot easier to predict due to the locality propertics.

SEQUENTIAL AND WEAK CONSISTENCY MODELS

This section studies shared-memory behavior in relation to program execution order and
memory-access order. The sequential consistency and weak consistency memory models are
characterized and their potential for improving performance is assessed. In Chapter 9, we will introduce the
processor consistency and release consistency models for building scalable multiprocessor systems.

5.4.1 Atomicity and Event Ordering

The problem of memory inconsistency arises when the memory-access order differs from the program
execution order. As illustrated in Fig. 5.19a, a uniprocessor system maps an SISD sequence into a similar
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execution sequence. Thus memory accesses (for instructions and data) are consistent with the program
execution order. This property has been called sequential consistency (Lamport, 1979).

In a shared-memory multiprocessor, there are multiple instruction sequences in different processors as
shown in Fig. 5.19b. Different ways of interleaving the MIMD instruction sequences into a global memory-
access sequence lead to different shared memory behaviors.

P P, Py P
I K7
: e 8
Program . 15 J5 PO ka4
15 4 J4
Order PO k3
P 14 13 PO J3 K2
(PO) B F 2 =
12 11 J1 'YX
"
3
Switch
X
Memory Memory Shared memory system
Order system (A global memory order for alt processors}
(a) Sequential consistency in an SISD system (b} Event ordering in an MIMD system
Processor 1 Processor 2 Processor 3
a A=1 c. B:=1 e C:=1
b. PrictB, C d. PrintA C f PrintA B

Shared memory

A, B, C are shared writable variables in memory
(initially, A=B=C=0)

{c) A parallei program from Example 5.9

Fig. 5.19 The access ordering of memory events in a uniprocessor and in 2 multiprocessor, respectively
(Courtesy of Dubois and Briggs, Tutorial Notes on Shared-Memory. Multiprocessors, Int. Symp. Computer
Arch., May 1990) o -
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How these two sequences are made consistent distinguishes the memory behavior in strong and weak
models, The quality of a memory model is indicated by hardware/software efficiency, simplicity, usefulness,
and bandwidth performance.

Memory Consistency issues The behavior of a shared-memory system as observed by processors is called
a memory model. Specification of the memory model answers three fundamental questions: {1) What behavior
should a programmer/compiler expect from a shared-memory multiprocessor? (2) How can a definition of the
expected behavior guarantee coverage of all contingencies? (3) How must processors and the memory system
behave to ensure consistent adherence to the expected behavior of the multiprocessor?

In general, choosing a memory model involves making a compromise between a strong model minimally
restricting software and a weak model offering efficient implementation. The use of Ppartial order in specifying
memory events gives a formal description of special memory behavior.

Primitive memory operations for multiprocessors include /oad (read), store (write), and one or more
synchronization operations such as swap (atomic load-store) or conditional store. For simplicity, we consider
one representative synchronization operation swap, besides the load and store operations.

Event Orderings On a multiprocessor, concurrent instruction streams (or threads) executing on different
processors are processes. Each process executes a code segment. The order in which shared memory
operations are performed by one process may be used by other processes. Memory events correspond to
shared-memory accesses. Consistency models specify the order by which the events from one process should
be observed by other processes in the machine.

The event ordering can be used to declare whether a memory event is legal or illegal, when several
processes are accessing a common set of memory locations. A program order is the order by which memory
accesses occur for the execution of a single process, provided that no program reordering has taken place.
Dubois et al. (1986) have defined three primitive memory operations for the purpose of specifying memory
consistency models:

(1) A load by processor P, is considered Dperformed with respect to processor P; at a point of time when
the issuing of a store to the same location by P, cannot affect the value teturned by the load.

(2) A store by P, is considered performed with respect to Py at one time when an issued load to the same
address by P, returns the value by this szore,

(3) Aload is globally performed if it is performed with respect to all processors and if the store that is the
source of the returned value has been performed with respect to all processors.

As illustrated in Fig. 5.19a, a processor can execute instructions out of program order using a compiler to
resequence instructions in order to boost performance. A uniprocessor system allows these out-of-sequence
executions provided that hardware interlock mechanisms exist to check data and control dependences
between instructions.

When a processor in a multiprocessor system executes a concurrent program as illustrated in Fig. 5.19b,
local dependence checking is necessary but may not be sufficient to preserve the intended outcome of a
concurrent execution.
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Maintaining the correctness and predictability of the execution results is rather complex on an MIMD
system for the following reasons:

(a) The order in which instructions belonging to different streams are executed is not fixed in a parallel
program. If no synchronization among the instruction streams exists, then a large number of different
instruction interleavings is possible.

(b) If for performance reasons the order of execution of instructions belonging to the same stream is
different from the program order, then an even larger number of instruction interleavings is possible.

{¢) If accesses are not atomic with multiple copies of the same data coexisting as in a cache-based system,
then different processors can individually observe different interleavings during the same execution.
In this case, the'total number of possible execution instantiations of a program becomes even larger.

& Example 5.8 Event ordering in a three-processor system
(Dubois, Scheurich, and Briggs, 1988)

To illustrate the possible ways of interleaving concurrent program executions among multiple processors
updating the same memory, we examine the simultaneous and asynchronous executions of three program
segments on the three processors in Fig. 5.19¢.

The shared variables are initially set as zeros, and we assume a Print statement reads both variables
indivisibly during the same cycle to avoid confusion. If the outputs of all three processors are concatenated
in the order Py, P,, and F;, then the output forms a 6-tuple of binary vectors.

There are 2° =64 possible output combinations. If all processors execute instructions in their own program
orders, then the execution interleaving a, b, ¢, d, e, fis possible, yielding the output 0010i1. Another
interleaving, a, c, e, b, d, f; also preserves the program orders and yields the output 111111

If processors are allowed to execute instructions out of program order, assuming that no data dependences
exist among reordered instructions, then the interleaving b. d, £, ¢, a, ¢ is possible, yielding the output 000000.

OQut of 6! = 720 possible execution interleavings, 90 preserve the individual program order. From these
90 interleavings not all 6-tuple combinations can result. For example, the outcome 000000 is not possible if
processors execute instructions in program order only. As another example, the outcome 011001 is possible
if different processors can observe events in different orders, as can be the case with replicated memories.

Atomicity From the above example, multiprocessor memory behavior can be described in three categories:

(1) Program order preserved and uniform observation sequence by all processors.
(2) Out-of-program-order allowed and uniform observation sequence by all processors.
(3) Out-of-program-order allowed and nonuniform sequences observed by different processors.

This behavioral categorization leads to two classes of shared-memory systems for multiprocessors: The
first allows atomic memory accesses, and the second allows nonatomic memory accesses. A shared-memory
access is atomic if the memory updates are known to all processors at the same time. Thus a sfore is atomic
if the value stored becomes readable to all processors at the same time. Thus a necessary and sufficient



